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Abstract
Inferring social relationships from mobility data is crucial for many
applications because it reflects real-world connections among peo-
ple. However, large-scale trajectory datasets with ground-truth
social ties are exceedingly scarce, making it difficult to train deep
models for relationship inference. To address this gap, we propose
a transferable social relationship inference framework that can be
trained on one high-quality, labeled dataset and then generalized
to new datasets, even from different cities.
Our framework rests on the key insight that social bonds depend
largely on the frequency of individual meetings and the popularity
of those meeting locations, both of which can be inferred statis-
tically from raw trajectory data, irrespective of the underlying
geographic semantics. It comprises two main modules: 1) Univer-
sal Social Relationship Classifier (USRC): A model trained to infer
social relationships from trajectory data, and 2) Spatial Embedding
Transfer (SET): A location embedding alignment technique that
adapts new datasets to the pre-trained USRC model.
By aligning location embeddings, SET module enables the pre-
trained USRC to interpret previously unseen datasets without extra
supervision. Experiments on five public datasets demonstrate that
our method achieves state-of-the-art performance in zero-shot so-
cial relationship inference, surpassing other unsupervised, and in
some cases, even supervised, approaches. Additionally, the SET
module significantly improves location embedding alignment, out-
performing existing baseline methods. The source code and data
are available at https://github.com/chuchen2017/SET.

CCS Concepts
• Information systems→ Geographic information systems.
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1 Introduction
Individuals’ social activities greatly influence their mobility be-
haviors, for example, friends often visit the same places together
[6, 8, 10, 33]. As previous studies show [3, 16, 24–26], social ties
between users can be accurately inferred using mobility data. In-
ferring social relationships from mobility data is critical because
it captures the physical connections people form in the real world.
This knowledge not only supports traditional online social network
applications, such as targeted advertising, recommendation sys-
tems, and social or cultural studies, but also enables unique use
cases. For example, they can help identify unknown members of
criminal or terrorist organizations or model disease transmission
through human contact in epidemiology. Additionally, they have
been studied in the context of location privacy, where social ties
can be inferred from co-location data, potentially compromising
user anonymity [3].

However, large-scale datasets that include both mobility data
and ground-truth social connections for the same individuals are
extremely rare. This scarcity is partly due to privacy constraints
limiting access to mobility data and partly because social network
graphs and mobility records are rarely available for the same set of
people. Consequently, only a small number of organizations can
access both datasets, making it difficult to train deep models for
relationship inference. Most existing methods[14, 25, 26, 30] either
rely on supervised learning with explicit social connection labels or
adopt unsupervised approaches based on manually defined features
or location semantics, thereby limiting their generalizability. Yet, as
shown in [23, 24], social ties often hinge on meeting frequency and
location popularity—both of which can be derived from raw trajec-
tory data independently of the underlying geography. Despite this,
many existing approaches remain tailored to the specific datasets
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Figure 1: An illustration of how the spatial embedding trans-
fer framework enables transferability across datasets.

on which they were trained, inhibiting their ability to generalize
across different regions [16–18].

While various deep learning strategies—such as contrastive learn-
ing [4], transfer learning [12], and meta-learning [29]—have been
explored to enhance the generalizability of human mobility models
[7, 15, 35], to the best of our knowledge, no work has specifically
addressed generalizability for social relationship inference from
trajectory data.

Beyond model-based transfer learning, embedding space align-
ment—a foundational technique for the rapidly evolving field of
multimodal learning—offers a more generalizable framework for
various downstream models and tasks [13, 27].

Therefore, in this paper, we employ spatial embedding alignment
to generalize social inference models. To illustrate our high-level
idea, consider the example in Figure 1. First, a model is trained on
a labeled dataset, termed a source dataset, following a standard
supervised learning manner; in the figure, the source dataset is
from Los Angeles (LA). To enable cross-dataset transferability, spa-
tial embedding transfer methods are applied to align the location
embedding distribution of a target dataset, New York (NY), in our
example, with that of LA. Since the model is trained on LA’s em-
bedding space, an effective embedding transfer method ensures
that the transformed NY embeddings remain interpretable by the
pre-trained LA model. Intuitively, landmarks in NY (e.g., the Statue
of Liberty) are mapped to locations in the LA embedding space
where similar landmarks (e.g., the Hollywood sign) exist. Since
these landmarks have comparable popularity (and perhaps similar
semantics for the purposes of social inference) in the two datasets,
they are expected to contribute similarly to the inference of social
ties. Our spatial embedding transfer enables pre-trained models to
be transferable across different geographic regions by matching
key spatial and contextual relationships in the location embedding
spaces irrespective of the underlying geographic semantics.

To realize the above idea, we introduce a transferable social rela-
tionship inference framework that is initially trained on a source
dataset (e.g., LA) and then generalized to a target dataset (e.g., NY)
by aligning the target location embeddings with those of the source.
Our framework comprises two main components—a Universal So-
cial Relationship Classifier (USRC) model and a Spatial Embedding

Transfer (SET) module—and is designed to enable zero-shot infer-
ence on target datasets without social relationship labels. USRC is
a deep learning inference model that takes two trajectories—each
belonging to a different individual—and predicts their social rela-
tionship. After USRC is trained on the source dataset, its location
embedding layer serves as the “source embedding distribution” for
transferability across datasets. Our SET module then aligns the
location embedding features of target (unlabeled) datasets with this
distribution.

Our key contribution lies in the alignment step, which integrates
both SET and USRC to transfer knowledge across locations. First,
SET identifies anchor points in LA and NY by matching locations
based on the similarity of their ranked location popularity. For
instance, NY’s most popular location is paired with LA’s, inheriting
the pre-trained USRC embedding from LA. This reflects the insight
that the likelihood of social connection depends on where people
meet—co-visit at a popular landmark like the Empire State Building
is generally less indicative of friendship than co-visit at a private
residence.

Next, we feed sequences of NY embeddings, derived from user co-
visits, pairwise and masked, into a USRC-based contrastive learning
framework, freezing the USRC parameters from LA. The goal is
to fine-tune the embeddings so they also capture co-visit patterns,
leveraging USRC’s pre-trained knowledge from LA. In sum, this
alignment transfers both the “popularity” and “co-visit” features of
each location (captured through its embedding) from LA to NY.

Across five datasets, our framework demonstrates exceptional
generalization ability. Notably, when trained on a richer source
dataset and tested on a different target dataset, it outperforms a
model trained and tested on target dataset itself—improving the
evaluationmetric by 14.4%. This underscores the value of leveraging
more comprehensive training data for transfer learning.

Our contributions in this study can be summarized as follows:

• A transferable social relationship inference framework that
infers social relationships between users based on their tra-
jectory data and can perform zero-shot inference on unla-
beled datasets.
• A novel spatial embedding transfer method. The method is
designed to align location embedding distributions of two
cities based on their human mobility patterns. The aligned
embedding space is interpretable by the pre-trained model
while preserving the unique characters of the target dataset.
• Through experiments on five real-world datasets, we demon-
strated the strong generalizability of our social relationship
inference model. Our SET module outperformed other em-
bedding alignment baselines, and our zero-shot inference
results also surpassed those of other unsupervised friendship
inference models.

2 Related Work
Social relationship inference: Discovering real-world connec-
tions among people by analyzing their mobility data is a critical
aspect of modern trajectory data mining. EBM [23, 24], among the
earliest methods, introduced an entropy-based framework that uses
Rényi entropy to capture co-visit patterns and Shannon entropy to
capture location popularity. It showed that popularity and co-visit
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patterns alone are sufficient for revealing social ties, making addi-
tional location semantics unnecessary for improving relationship
inference. Walk2friend [3] applies graph embedding techniques
to infer social relationships. Followed by a series of graph-based
methods such as MRGAN [25], Heter-GCN [30], SRINet [26], and
HMGCL [17]. These methods generally combine social network and
location graphs together to form a heterogeneous graph and apply
graph neural networks (GNN) to learn the embedding features of
each user and location. By computing the similarity between users,
the relationship can be scored and inferred. However, these studies
typically require evaluation datasets with ground truth friendship
data to initiate their heterogeneous graph approaches, which sig-
nificantly limits their generalizability.

Transfer Learning: Transfer learning encompasses awide range
of sub-fields, including domain adaptation [36], domain general-
ization [34], embedding alignment [1], and meta-learning [20]. Al-
though each subfield has its own assumptions and focus areas, they
all share the common goal of transferring knowledge from one do-
main or task to another. In the context of spatial data, which often
suffers from uneven label distribution across regions, transferring
knowledge from one area to another is a promising approach to
address this imbalance and enable generalization to unseen regions.

Currently, most spatial transfer learning methods focus on do-
main adaptation and meta-learning. For example, AdaTM [36] and
DastNet [28] utilize domain adaptation techniques to enhance pre-
dictions in regions with limited data. Similarly, CHAML [5] and
MetaStore [20] apply metalearning strategies to tasks such as the
next POI recommendation and the placement of the stores. While
these methods are grounded in transfer learning principles, they
still rely on labeled data from the target region. Furthermore, the
models used in these tasks, such as traffic prediction and POI rec-
ommendation, are often auto-regressive, meaning the transferred
knowledge serves more as an augmentation to existing models
rather than enabling training a transferable model from scratch. In
this research, we propose a novel spatial transfer learning frame-
work based on embedding alignment. Our method does not require
labeled data from the target region and supports various alignment
techniques, making it flexible and broadly applicable.

Embedding alignment: Embedding space alignment plays key
roles in tasks like cross-lingual word translation [1], knowledge
graph entities alignment [32], and graph analytics [9]. The funda-
mental concept is to find a mapping function that gives the optimal
matching solution to map one distribution to another [13]. Unsu-
pervised learning methods are commonly used for alignment, with
the Wasserstein Generative Adversarial Network (GAN) being one
of the foundational approaches [2]. For graph alignment, WAlign
[11] employs graph neural networks as graph encoders and uses a
Multilayer Perceptron as the discriminator in a Wasserstein GAN
to learn to estimate the Wasserstein distance between two distribu-
tions. Once the discriminator is trained, it guides the adversarial
training of the graph encoders, enabling them to map the target
distribution to the source distribution effectively. SANA improves
the method by involving the graph augmentation methods in the
training process [21]. HyperAlign also involves the graph augmen-
tation method and introduces contrastive learning to obtain more
compatible graph structures [9].

Unlike well-studied graph alignment and cross-lingual word
alignment algorithms, which are typically applied to target and
source datasets with ground truth alignment labels, alignment be-
tween different geographical regions lacks such labels. As a result,
it must be learned in a fully unsupervised manner, and its effective-
ness can only be evaluated through the performance of downstream
tasks. For spatial alignment, Takahiro et al. propose a spatial embed-
ding alignment method based on anchor points. The hierarchical
batch anchoring method is proposed to select anchor points ac-
cording to the total number of visits in each urban area, and they
then utilize an affine transformation matrix to learn the mapping
function between distributions [31]. However, their anchor-based
alignment relies solely on popularity, ignoring other insights from
trajectory data. Moreover, affine transformation only guarantees
alignment among anchor points, leaving its generalization to non-
anchor points uncertain.

3 Preliminary
Trajectory: In this paper, we denote the trajectory of a user u
in length l as a sequence of visit points 𝑇𝑟𝑎 𝑗𝑢 = {𝑝𝑡𝑖 }𝑙𝑖=1, where
𝑝𝑡𝑖 = (𝑙𝑜𝑐, 𝑡), with 𝑙𝑜𝑐 is represented by a place id and 𝑡 indicates
the timestamp of the visit.
Co-visit sequence: When two users meet at the same place and
time, i.e., their trajectories intersect at a set of points 𝑝𝑡𝑖 , we repre-
sent the sequence of these intersections as their co-visit sequence,
the time threshold of the intersection is denoted as 𝜏 . We can for-
mulate the co-visit sequence of user 𝑛 and user𝑚 in length 𝑙 as
𝐶𝑉𝑛,𝑚 = {𝑝𝑡𝑖 |𝑝𝑡𝑖 .𝑙𝑜𝑐 ∈ 𝑇𝑟𝑎 𝑗𝑢𝑚 , |𝑝𝑡𝑖 .𝑡𝑢𝑛 − 𝑝𝑡𝑖 .𝑡𝑢𝑚 | ≤ 𝜏}𝑙

𝑖=1.
Co-location sequence: Beyond shared visits at the same time, in-
dividuals who visit the same location at different times can also
indicate a potential social connection. In [8], this is referred to
as a “followship” relationship, where one user’s visit influences
the other to go to the same location later. Therefore, we formu-
late the co-location sequence of user 𝑛 and user𝑚 in length 𝑙 as
𝐶𝐿𝑛,𝑚 = {(𝑙𝑜𝑐, 𝑓𝑛, 𝑓𝑚)𝑖 |𝑙𝑜𝑐𝑖 ∈ 𝑇𝑟𝑎 𝑗𝑢𝑛 , 𝑙𝑜𝑐𝑖 ∈ 𝑇𝑟𝑎 𝑗𝑢𝑚 }𝑙𝑖=1, where
𝑓𝑛 = 𝐶𝑜𝑢𝑛𝑡 (𝑙𝑜𝑐𝑖 ,𝑇𝑟𝑎 𝑗𝑢𝑛 ) denote the visit frequency of 𝑙𝑜𝑐𝑖 of user
𝑛.
Source and Target dataset: This research focuses on creating a
generalizable method for inferring social relationships by training
a model on one (source) dataset and applying it to another (tar-
get) dataset. The labeled dataset used for training is referred to as
the source, denoted as 𝐷𝑆 , while the unlabeled dataset to which
the model is later applied is called the target, denoted as the 𝐷𝑇 .
Accordingly, the corresponding embedding spaces are termed the
source and target location embedding spaces, respectively.
Social relationship inference: The social relationship inference
based on trajectory data is defined as follows. We are given a set
of 𝑁 users, each associated with a trajectory 𝑇𝑟𝑎 𝑗𝑢𝑖 in a dataset
𝐷 = {𝑇𝑟𝑎 𝑗𝑢𝑖 }𝑁𝑖=1. We also have a social connection matrix 𝑌𝑁×𝑁 ∈
{0, 1} where 𝑌𝑛,𝑚 = 1 indicates that users 𝑢𝑛 and 𝑢𝑚 are friends,
and 𝑌𝑛,𝑚 = 0 otherwise. The task is to learn a inference function
F (𝑇𝑟𝑎 𝑗𝑢𝑛 ,𝑇𝑟𝑎 𝑗𝑢𝑚 ) → 𝑦𝑛,𝑚 , which takes the trajectories of two
users as input and outputs a prediction 𝑦𝑛.𝑚 indicating the social
connectivity of two people.
Transferable social relationship inference: Suppose we have
two datasets, 𝑆 and 𝑇 , each containing user trajectories, denoted as
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𝐷𝑆 and 𝐷𝑇 . We also have a social network matrix 𝑌𝑆 for dataset 𝑆
that indicates which users are friends. However, no such ground-
truth social network information is available for dataset𝑇 . The goal
is to leverage the labeled dataset (with𝐷𝑆 and𝑌𝑆 ) to infer the social
network 𝑌𝑇 in dataset 𝑇 (where 𝐷𝑇 only is provided).

Our Approach is to first learn a model F𝑆 that maps from tra-
jectories in 𝐷𝑆 to social connections: F𝑆 : 𝐷𝑆 → 𝑌𝑆 . Next, we
fine-tune the trained model F𝑆 on the unlabeled trajectories 𝐷𝑇

to obtain a new model F𝑇 . Finally, we apply F𝑇 to 𝐷𝑇 to predict
the social network 𝑌𝑇 . F𝑇 : 𝐷𝑇 → 𝑌𝑇 where 𝑌𝑇 represents the
inferred social connections among users in the dataset 𝑇 .

4 Methodology
In this section, we first propose a social connection inference model
named Universal Social Relationship Classifier (USRC) and then
propose the Spatial Embedding Transfer (SET) module to make
USRC transferable across different cities and datasets.

4.1 Universal Social Relationship Classifier
To make the model transferable across different regions, we design
a model that only uses location data to infer the social relationship
between two users.

Firstly, the model takes the trajectory of user 𝑛 and𝑚 as input,
then the model preprocesses their trajectories to extract the Co-visit
sequence and Co-location sequence of two users. After that we em-
ployed three independent encoders to learn from their trajectories,
co-visit and co-location. The USRC model can be formulated as
follows,

𝑈𝑆𝑅𝐶 (𝑇𝑟𝑎 𝑗𝑢𝑛 ,𝑇𝑟𝑎 𝑗𝑢𝑚 ,𝐶𝐿𝑛,𝑚,𝐶𝑉𝑛,𝑚) → 𝑦𝑛,𝑚 (1)

Before learning from the sequence data, an embedding module is
employed to map location IDs into a continuous feature space.

𝑒𝑖 = 𝐸𝑚𝑏 (𝑙𝑜𝑐𝑖 ) (2)

𝐸𝑚𝑏 (𝑙𝑜𝑐𝑖 ) = 𝜃𝐸𝑚𝑏
𝑇 · 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑙𝑜𝑐𝑖 ) (3)

where 𝑙𝑜𝑐𝑖 denotes the location id to be embedded, 𝑒𝑖 denotes
the feature representation of location 𝑖 . onehot is the one-hot
function, which maps the location id to a one-hot representation
𝑜𝑛𝑒ℎ𝑜𝑡 (𝑙𝑜𝑐𝑖 ) ∈ 𝑅 |𝑙 | , where |𝑙 | is the number of locations in the
current dataset. 𝜃𝐸𝑚𝑏 ∈ 𝑅 |𝑙 |×𝑑 is the trainable parameter of the
location embedding function, where 𝑑 is the location embedding
feature dimension. The location embedding function is trainable by
downstream tasks, whichmakes the embedding feature of each loca-
tion contains both the essential information of the current location
(e.g., its popularity) and relationships with other locations.

After mapping the locations into the feature space, we can use a
deep neural network to learn from a sequence of locations. Since
the order of co-visit and co-location locations does not matter, we
employ two Transformer Encoder networks without positional en-
coding to encode𝐶𝐿𝑛,𝑚 and𝐶𝑉𝑛,𝑚 and one additional Transformer
Encoder to encode trajectories of two users.

𝑐𝑣 =𝑚𝑎𝑥 | |𝑇𝑟𝑎𝑛𝑠𝑐𝑣 (𝐸𝑚𝑏 (𝐶𝑉𝑛,𝑚)) | | (4)

𝑐𝑙 =𝑚𝑒𝑎𝑛 | |𝑇𝑟𝑎𝑛𝑠𝑐𝑙 (𝐸𝑚𝑏 (𝐶𝐿𝑛,𝑚)) | | (5)
𝑡𝑟𝑎 𝑗𝑛 =𝑚𝑒𝑎𝑛 | |𝑇𝑟𝑎𝑛𝑠𝑡𝑟𝑎 𝑗 (𝐸𝑚𝑏 (𝑇𝑟𝑎 𝑗𝑢𝑛 )) | | (6)
𝑡𝑟𝑎 𝑗𝑚 =𝑚𝑒𝑎𝑛 | |𝑇𝑟𝑎𝑛𝑠𝑡𝑟𝑎 𝑗 (𝐸𝑚𝑏 (𝑇𝑟𝑎 𝑗𝑢𝑚 )) | | (7)

𝑦𝑛,𝑚 = 𝜃𝑦 (𝜃𝑐𝑙𝑐𝑙 + 𝜃𝑐𝑣𝑐𝑣 + 𝜃𝑡 𝑡𝑟𝑎 𝑗𝑛 + 𝜃𝑡 𝑡𝑟𝑎 𝑗𝑚) (8)

where 𝑇𝑟𝑎𝑛𝑠𝑐𝑙 , 𝑇𝑟𝑎𝑛𝑠𝑐𝑣 and 𝑇𝑟𝑎𝑛𝑠𝑡𝑟𝑎 𝑗 denote the Transformer En-
coder for co-location, co-visit and trajectory, respectively, 𝑐𝑙 ∈ 𝑅𝑑 ,
𝑐𝑣 ∈ 𝑅𝑑 and 𝑡𝑟𝑎 𝑗𝑛 ∈ 𝑅𝑑 denote the feature representation of the
co-location, co-visit sequence and trajectory of user 𝑛. 𝜃𝑐𝑙 ∈ 𝑅𝑑

′×𝑑 ,
𝜃𝑐𝑣 ∈ 𝑅𝑑

′×𝑑 , 𝜃𝑡 ∈ 𝑅𝑑
′×𝑑 , 𝜃𝑦 ∈ 𝑅1×𝑑

′
denote the weighting pa-

rameters of the model. The co-visit sequence between two users
captures the most critical information about their social relation-
ships. Therefore, we apply max pooling to extract the most salient
features from the co-visit sequence for representation. On the other
hand, while the co-location information and trajectory of each user
serve as valuable supplements to co-visit data, especially given the
general sparsity of co-visit data, the co-location and user trajectory
sequence often contains irrelevant and redundant information. To
address this, we employ mean pooling to aggregate and smooth the
information within both the co-location sequence and trajectories
of two users.

After modeling the co-visit, co-location, and trajectories of two
users, we can now have a feature to represent the social relationship
of two users 𝑦𝑛,𝑚 . According to the label data that we have in the
training dataset, we have 𝑦𝑛,𝑚 ∈ {0, 1}. We use an MSE loss func-
tion, treating social connection inference as a regression problem.
Predictions 𝑦𝑛,𝑚 near 1 indicate a higher likelihood of connection,
while values near 0 suggest the opposite. Because there’s no need to
make a binary classification for evaluation, no threshold is required.
Moreover, the smooth gradients from MSE help the frozen model
adapt more effectively during the following contrastive learning.

Incorporating the temporal information (e.g., time or duration)
for each co-visit would increase the complexity of the social infer-
ence model and complicate subsequent transfer learning. We did
not include temporal info in the USRC, as its impact is suspected to
be low.

4.2 Spatial Embedding Transfer (SET)
To enable USRC to transfer across datasets, we first freeze all its
parameters once training on source data is complete. We then use
our SET module to align the target location embeddings with those
of the source, and finally replace USRC’s frozen location embedding
layer with these newly aligned embeddings. The key to transferabil-
ity is how to map the embedding feature distribution of the target
dataset to the source dataset properly. The SET module not only
needs to align the target embedding distribution to the source space
to be compatible with the frozen USRC, but it also needs to capture
the unique co-location/visit patterns shown in the target dataset in
a way the USRC can interpret. We propose the SET module to solve
these two challenges in three steps: Spatial Initiation, Structural
Matching, and Global Finetuning. The first two steps adapt the
source embeddings to capture location popularity from the target
dataset, while the final step incorporates the target’s co-location
and visit patterns. The framework of the module is shown in Figure
2.

Spatial Initiation: Instead of randomly initiating the location
embedding of the target dataset, we propose a Spatial Initiation
method to meet the assumption required by our Structural Match-
ing method. We define spatial anchor points for this purpose. Prior
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Figure 2: An illustration of the Spatial Embedding Transfer (SET) module.

research shows that different cities share similar visit-frequency
patterns, meaning their most and least popular places maintain a
consistent proportion across cities [31]. Therefore, sampling loca-
tions from two popularity distributions and pairing them as anchor
points can effectively capture the structural similarities between
cities. We use location entropy to compute popularity [22, 24]. By
linear sampling from the ranked location entropy distribution, an-
chor points of each city are automatically selected. After pairing
the ordered anchor points of the source and target cities, we obtain
the correspondence relationship of location popularity between the
two cities.

𝐸𝑙 = −
∑︁

𝑢,𝑃𝑢,𝑙≠0
𝑃𝑢,𝑙 log 𝑃𝑢,𝑙 (9)

𝐴𝑛𝑐ℎ𝑜𝑟𝑆
p∼ 𝑅𝑎𝑛𝑘 (𝐸𝑙𝑆 ) (10)

𝐴𝑛𝑐ℎ𝑜𝑟𝑇
p∼ 𝑅𝑎𝑛𝑘 (𝐸𝑙𝑇 ) (11)

𝐴𝑛𝑐ℎ𝑜𝑟𝑇→𝑆 = 𝑧𝑖𝑝 (𝐴𝑛𝑐ℎ𝑜𝑟𝑇 , 𝐴𝑛𝑐ℎ𝑜𝑟𝑆 ) (12)
where 𝑃𝑢,𝑙 denotes the probability that a randomly picked check-in
at location 𝑙 belongs to user 𝑢. 𝑅𝑎𝑛𝑘 (𝐸𝑙𝑆 ), 𝑅𝑎𝑛𝑘 (𝐸𝑙𝑇 ) denote the
ranked location entropy of source and target datasets 𝑆 and 𝑇 , re-
spectively. p = 𝛼 · min( |𝑙𝑆 |, |𝑙𝑇 |) denotes the number of locations
sampled as anchor points; it represents 𝛼 percent of the locations
from the dataset with fewer locations. 𝐴𝑛𝑐ℎ𝑜𝑟𝑆 and 𝐴𝑛𝑐ℎ𝑜𝑟𝑇 de-
note the anchor points set of datasets 𝑆 and 𝑇 , which are sampled
sequentially in linear order based on their location entropy distri-
butions. By pairing the corresponding anchor points between the
two datasets, we obtain the dictionary 𝐴𝑛𝑐ℎ𝑜𝑟𝑇→𝑆 . The matched
anchor points between two datasets indicate which places share
similar popularity. We then use this information to initialize 𝐸𝑚𝑏𝑇
by matching each location in the target dataset to a comparable
location in the source dataset.

𝐸𝑚𝑏𝑇 [𝑙𝑜𝑐𝑖 ∈ 𝐴𝑛𝑐ℎ𝑜𝑟𝑡 ] = 𝐸𝑚𝑏𝑆 [𝐴𝑛𝑐ℎ𝑜𝑟𝑇→𝑆 [𝑙𝑜𝑐𝑖 ]] (13)

Most of the time, the number of locations in two different datasets
does not match exactly, and we also want to maintain flexibility
during this phase. This means we don’t want our initialized target
embedding space to be exactly the same as the source one. There-
fore, we select only a subset of locations as anchors and set the
embeddings of non-anchor locations according to the following
rules.

𝐸𝑚𝑏𝑇 [𝑙𝑜𝑐𝑖 ∉ 𝐴𝑛𝑐ℎ𝑜𝑟𝑡 ] =
𝐸𝑚𝑏𝑆 [𝐴𝑛𝑐ℎ𝑜𝑟𝑇→𝑆 [argmin dis (𝑙𝑜𝑐𝑖 , 𝐴𝑛𝑐ℎ𝑜𝑟𝑇 | |𝐺𝑟𝑎𝑝ℎ𝑇 )]] + 𝛿

(14)

For each place that is not selected as an anchor in the initiation
process, the argmin dis function finds its closest anchor point ac-
cording to𝐺𝑟𝑎𝑝ℎ𝑇 distance and assigns its embedding according to
that anchor point. Random noise 𝛿 ∼ N(0, 𝜎) is added to their em-
beddings to enhance diversity and promote regularization.𝐺𝑟𝑎𝑝ℎ𝑇
is essentially the OD (Origin-Destination) Matrix of 𝑇 , a common
tool in transportation planning, logistics, and urban mobility that
shows the number of trips from each origin to each destination.
Here, we derive these flows directly from trajectory data.

Structural Matching: We propose a structural fine-tuningmod-
ule to further align the target location embeddings with the source
embedding space. Once each target location is assigned a value
from the source distribution, 𝐸𝑚𝑏𝑇 occupies the same feature space
as 𝐸𝑚𝑏𝑆 . We then refine their alignment by incorporating OD flows
derived from the trajectory data, ensuring a more precise match-
ing of the two distributions. Algorithm 1 describes the Structural
Matching approach to align target and source embedding distribu-
tions using the OD graph of the target dataset. In each iteration,
the algorithm updates the embeddings for anchor points and their
neighbors, guiding them toward the anchor point’s nearest feature
in the source embedding 𝐸𝑚𝑏𝑆 . The flow on the edges in the graph
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Algorithm 1 Structural Matching
Input: 𝐸𝑚𝑏𝑇 , 𝐸𝑚𝑏𝑆 , 𝐴𝑛𝑐ℎ𝑜𝑟𝑇 , 𝐺𝑟𝑎𝑝ℎ𝑇 , Number of iterations 𝜏 ,

Threshold 𝜖 , Learning rate 𝐿𝑅
Output: 𝐸𝑚𝑏𝑟
1: for each 𝑖𝑡𝑒𝑟 ∈ [1, 𝜏] do
2: for each 𝑙𝑜𝑐𝑖 ∈ 𝐴𝑛𝑐ℎ𝑜𝑟𝑇 do
3: 𝑤 = 𝐸𝑚𝑏𝑆 [argmin dis(𝑙𝑜𝑐𝑖 , 𝐸𝑚𝑏𝑆 )]
4: 𝑙𝑟 = 𝐿𝑅 · (1 − 𝑖𝑡𝑒𝑟

𝜏 )
5: for each 𝑙𝑜𝑐 𝑗 ∈ 𝐺𝑟𝑎𝑝ℎ𝑇 [𝑙𝑜𝑐𝑖 ] do
6: if 𝐺𝑟𝑎𝑝ℎ𝑇 [𝑙𝑜𝑐𝑖 , 𝑙𝑜𝑐 𝑗 ] > 𝜖 then
7: 𝐸𝑚𝑏𝑇 [𝑙𝑜𝑐 𝑗 ] = 𝑙𝑟 ·𝐺𝑟𝑎𝑝ℎ𝑇 [𝑙𝑜𝑐𝑖 , 𝑙𝑜𝑐 𝑗 ] · (𝐸𝑚𝑏𝑇 [𝑙𝑜𝑐 𝑗 ]−

𝑤)
8: end if
9: end for
10: end for
11: end for
12: return 𝐸𝑚𝑏𝑇

serve as weights, influencing how far each node moves. The learn-
ing rate decreases over iterations, allowing for a gradual adjustment
of the target embedding distribution.

Global Finetuning: After Structural Matching, we have aligned
the location embedding distribution of the target dataset to the
embedding space on which the USRC has been trained. However,
each city or dataset has unique human mobility patterns, and these
unique characters often play an important role in location repre-
sentation. In this section, we propose an unsupervised location
embedding finetuning method, which aims to finetune the target
location embedding to learn the unique co-location/visit pattern of
the target dataset and make it a better fit for the pre-trained model.

The source embedding distribution is trained using gradients
passed from the USRC model, making the USRC the only model
capable of interpreting the distribution. Therefore, to ensure that the
fine-tuned target embedding remains suitable for the pre-trained
model, the pre-trained USRC must be involved in the fine-tuning
process.

Towards this end, we propose an embedding finetuning method
based on contrastive learning. The pre-trained USRC takes aug-
mented user co-location and co-visit sequences as input and outputs
hidden representations of these augmented pairs. We only aug-
ment co-visit and co-location sequences and mask the trajectory
embeddings to ensure the model zeroes in on the target dataset’s
unique co-location patterns—critical for social connection inference.
Full trajectories contain excessive redundant information that isn’t
needed for this task. According to the similarity between output
representations, location embeddings are trained to fit in the input
space of USRC. The formal definition of the algorithm is as follows.
Firstly, we define our location sequence augmentation function,

𝐴𝑢𝑔({𝑙𝑜𝑐𝑖 }𝑙𝑖=1) = {𝑙𝑜𝑐𝑖 ≠ 𝑙𝑜𝑐𝑘 }𝑙−1𝑖=1 (15)

which randomly removes 𝑙𝑜𝑐𝑘 from 𝑙𝑜𝑐 (1,𝑙 ) . The augmentation aims
to slightly modify a co-location or co-visit sequence by randomly
removing one of the locations in the sequence. We only augment
sufficiently long sequences where omitting a single location won’t
alter their overall meaning, ensuring that most of the original infor-
mation is preserved. In Algorithm 2, we first replace the location

Algorithm 2 Global Matching
Input: Emb𝑇 , Pretrained USRC, Target Dataset 𝐷𝑇 , Iteration 𝜏 ,

Batch size 𝑏𝑠 , Temperature 𝑡 , Learning rate 𝑙𝑟
Output: Emb𝐵
1: USRC.Emb← Emb𝑇
2: for each 𝑖𝑡𝑒𝑟 ∈ [1, 𝜏] do
3: sample minibatch {(Traj𝑢𝑛 ,Traj𝑢𝑚 ,CL𝑛,𝑚,CV𝑛,𝑚)}𝑏𝑠𝑖=1
4: for each 𝑘 ∈ [1, 𝑏𝑠] do
5: ℎ2𝑘−1 = USRC({Traj𝑢𝑛 ,Traj𝑢𝑚 ,Aug(CL𝑛,𝑚),Aug(CV𝑛,𝑚)}𝑘 )

6: ℎ2𝑘 = USRC({Traj𝑢𝑛 ,Traj𝑢𝑚 ,Aug(CL𝑛,𝑚),Aug(CV𝑛,𝑚)}𝑘 )
7: end for
8: for each 𝑖 ∈ [1, 2𝑏𝑠] and 𝑗 ∈ [1, 2𝑏𝑠] do
9: 𝑠𝑖 𝑗 =

ℎ⊤𝑖 ℎ 𝑗

∥ℎ𝑖 ∥ · ∥ℎ 𝑗 ∥
10: end for

11: 𝑙 (𝑖, 𝑗) = − log
(

exp(𝑠𝑖 𝑗 /𝑡 )∑2𝑏𝑠
𝑘=1,𝑘≠𝑖 exp(𝑠𝑖𝑘/𝑡 )

)
12: Loss = 1

2𝑏𝑠
∑𝑏𝑠
𝑘=1 [𝑙 (2𝑘 − 1, 2𝑘) + 𝑙 (2𝑘, 2𝑘 − 1)]

13: min
USRC.Emb

Loss(USRC.Emb, 𝐷𝑇 )
14: end for
15: return Emb𝑇 = USRC.Emb

embedding layer of the pre-trained USRC with the embedding layer
of the target dataset, to which we have applied Spatial Initiation
and Structural Matching. Subsequently, we generate a contrastive
learning pair using the augmentation function to the co-location
or co-visit sequence in a training sample. USRC is employed to
create the feature representation of the current sample. Next, we
compute the contrastive loss, which aims to maximize the cosine
similarity between augmented samples derived from the same co-
location/visit pair while minimizing the similarity for negative pairs
within the same batch. The gradient of the contrastive loss is used
to update the embedding layer of USRC, specifically the location
embedding corresponding to the target dataset.

Notably, while the training loss flows through USRC’s parame-
ters, they remain unchanged, preserving themodel’s source-domain
knowledge. At the same time, the loss updates the embedding layer,
teaching USRC to interpret the revised location embeddings. Con-
sequently, the location embedding is fine-tuned into a distribution
fully compatible with USRC.

5 Experiments
5.1 Datasets
For our experiments, we use two real-world publicly available user
check-in datasets with labeled friendships, Gowalla and Foursquare
[6, 33]. Users with check-in data and there friendship relationships
in Los Angeles, New York and Stockholm(ST) are extracted from
the datasets, forming five independent datasets. We then infer the
relationships across all users within the same dataset.

To refine the quality of the dataset, consistent with prior studies
using these datasets [24], we assumed that users without any co-
location are unknown to each other and removed those user pairs
from the dataset. Table 1 depicts the key statistics for each dataset.
Owing to distinct check-in data collection methods, Gowalla and
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Foursquare differ significantly, evenwithin the same city—justifying
our treatment of them as independent datasets.

Table 1: Statistics of the datasets used

Dataset Gowalla_LA Gowalla_NY Gowalla_ST Foursquare_LA Foursquare_NY
# users 7,498 7,302 10,693 5,736 9,199
# locations 10,146 10,866 23,471 20,166 33,128
# check-ins 367,586 368,027 686,851 1,189,571 1,881,703
# friends 2,270 2,424 6,101 936 1,896
# un-friends 60,893 71,304 104,673 41,370 95,100

5.2 Baselines
Wefirst compare the zero-shot inference performance of ourmethod
with other unsupervised social relationship inference baselines.
Next, we evaluate our spatial embedding transfer method against
other embedding alignment approaches.
Unsupervised inference baselines: The following baselines do
not require label data for their evaluation. To the best of our knowl-
edge, there are few unsupervised friendship inference models at
this stage; the included two baselines are the most recent ones we
could find.
Walk2friend [3]: Walk2Friend constructs a heterogeneous graph
of users and locations. Through randomwalk and skip-gram embed-
ding algorithms, it obtains user embeddings and infers relationships
between pairs of users by computing their cosine similarities.
Heter-GCN [30]: Heter-GCN also relies on a heterogeneous graph
structure, using an unsupervised loss to train a graph convolutional
network that captures relationships among both heterogeneous
and homogeneous nodes. The inference stage then compares user
node embeddings to determine their similarity.
Embedding alignment baselines: We compare our SET module
with other embedding alignment methods by evaluating how well
the inference model uses each alignment for zero-shot prediction.
HBP [31]: HBP applies a hierarchical batch anchoring method to
select anchor points and then applies Procrustes alignment to com-
pute the rotational matrix, which could map the target embedding
distribution to that of the source.
HBA [31]: HBA applies the same anchoring method of HBP but
uses the Affine alignment to align two distributions.
LSNA [19]: LSNA is a social network alignment method that utilizes
graph convolution layers to learn structural information and then
uses cross-network convolution to generate the aligned features of
nodes in two graphs.
SANA [21]: SANA uses Graph Attention Network as the encoder
and utilizes graph augmentation to refine the alignment relation-
ship between nodes of different graphs.
WAlign [11]: WAlign uses a GCN to encode graphs and then ap-
plies Wasserstein GAN (WGAN) to train a generator to map the
target distribution to the source distribution.
HyperAlign [9]: HyperAlign employs contrastive learning in graph
embedding and uses graph augmentation to create hyperedges to
augment the topological relationship. The alignment network is
also trained based on WGAN.

LSNA, SANA, and HyperGAN are network alignment methods
designed to find the optimal alignment solution for each individual
node in the target and source graphs. That is, the model identifies

which node in the source graph is most similar to a given node
in the target graph, considering the graph structure and node fea-
tures. In our experiments, we used these methods to determine
node-to-node alignment solutions. Subsequently, we assigned the
embedding features of the nodes in the source embedding layer
to their corresponding nodes in the target layer. HBP, HBA, SET,
WAlign, and our method SET belong to embedding alignment meth-
ods, which aim to find a mapping function to directly map the target
embedding distribution to that of the source.

5.3 Experiment Setting
In our experiments, we trained five USRC models, each on a dif-
ferent dataset, and evaluated each model on its own validation set
corresponding to the same training dataset. Thus, these results
represent the upper bound of USRC’s performance for that dataset
under a fully supervised setup. Subsequently, for each model, we
apply various embedding alignment methods to map the other
four target datasets’ embeddings onto the source embedding space
where the model was initially trained. The evaluation is based on
the model’s performance on the transferred datasets. We average
each dataset’s transfer performance from the other four to com-
pare our zero-shot inference performance with other unsupervised
friendship inference methods.

The embedding dimension for location embedding layers for all
datasets is set as 256. 𝜎 is set as 0.5. For each dataset, the top 500
locations with the highest location entropy are selected as anchor
points, followed by a linear sampling of 60% from the remaining
locations. The Structural Matching learning rate is set as 0.1, and
the number of iterations is set as 10. The global Global Finetuning
learning rate is set as 0.001, the batch size is set as 4, and the number
of iterations is set as 3.

5.4 Evaluation Metrics
To evaluate the prediction performance of all models, we employed
two widely used metrics in social relationship inference: the Area
Under the Precision-Recall Curve (PR-AUC) and the Area Under
the Receiver Operating Characteristic Curve (ROC-AUC). Because
the dataset has far more non-friend pairs than friend pairs, thus a
significant class imbalance in the dataset, we use PR-AUC as our
primary metric to evaluate performance across different datasets.

5.5 Experiment Results
In this section, we present the transfer inference result of our
method, compare the result with other unsupervised social rela-
tionship inference models, and then compare our SET module with
other spatial embedding transfer baselines.

Firstly, we present the transfer inference results of our method.
Table 2 presents a matrix of PR-AUC results for our model across
five datasets. Each row represents the dataset used for training, and
each column indicates the dataset used for inference. The diagonal
cells with underlines (where the model is trained and tested on the
same dataset) correspond to the supervised scenario, while the off-
diagonal cells show the zero-shot transfer results (i.e., the model is
trained on one dataset but used for inference on another). For exam-
ple, in the 1st column of Table 2, the 1st cell shows the performance
of a USRC model trained and evaluated in a supervised manner
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Table 2: Cross-dataset PR-AUC results of our transferable social relationship inference model.

Evaluation datasets

PR-AUC Gowalla_LA Gowalla_NY Gowalla_ST Foursquare_LA Foursquare_NY

Training datasets

Gowalla_LA 0.6548 0.5270 0.7792 0.5253 0.5677
Gowalla_NY 0.5307 0.5446 0.6891 0.4122 0.3801
Gowalla_ST 0.5208 0.4193 0.7961 0.4466 0.5174
Foursquare_LA 0.5834 0.4550 0.7302 0.5007 0.5414
Foursquare_NY 0.5560 0.5122 0.6803 0.4739 0.4962

Table 3: Performance comparison of unsupervised social relationship inference models

Method Gowalla_LA Gowalla_NY Gowalla_ST Foursquare_LA Foursquare_NY
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

Walk2friend 0.1823 0.7125 0.1323 0.6741 0.2433 0.7306 0.1033 0.7718 0.1086 0.7457
Heter-GCN 0.3478 0.7728 0.2773 0.7619 0.3191 0.7155 0.2901 0.7913 0.3097 0.7835
OURS 0.5567 0.8249 0.4980 0.8871 0.7197 0.7736 0.4704 0.8178 0.4964 0.8747

Table 4: Zero-shot inference comparison of various spatial embedding transfer methods

Method Gowalla_LA Gowalla_NY Gowalla_ST Foursquare_LA Foursquare_NY
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

HBP 0.2470 0.6607 0.2614 0.6538 0.1659 0.5904 0.1477 0.5826 0.2108 0.6268
HBA 0.2864 0.7091 0.2539 0.6895 0.1492 0.5867 0.1382 0.5681 0.1928 0.6647
LSNA 0.2336 0.6567 0.3026 0.7131 0.1526 0.5882 0.1680 0.6399 0.1988 0.5917
SANA 0.1693 0.6271 0.1931 0.6415 0.1438 0.5653 0.1259 0.5293 0.1423 0.5638
WAlign 0.3323 0.7503 0.3417 0.7419 0.1541 0.5754 0.1606 0.5869 0.2315 0.6514
HyperGAN 0.2278 0.6672 0.2529 0.6738 0.2005 0.6314 0.2097 0.6561 0.2821 0.6868
SET 0.5400 0.8640 0.4410 0.8154 0.4760 0.8055 0.5266 0.8332 0.5140 0.8254

on the Gowalla_LA dataset. The 2nd, 3rd, 4th, and 5th cells show
the transfer result of our proposed framework: the SET module is
applied to adapt the same USRC model, trained on Gowalla_LA,
to the Gowalla_NY, Gowalla_ST, Foursquare_LA, Foursquare_NY
datasets.

As shown in Table 2, our approach provides outstanding trans-
ferability across both different cities and datasets. Notably, when
trained on a high-quality dataset like Gowalla_LA, it even out-
performs the best supervised results on the Foursquare_LA and
Foursquare_NY datasets.

Next, we compare our zero-shot inference results against other
unsupervised inference baselines. For our method, we report the
average zero-shot performance on each dataset, where the model
has been transferred from each of the remaining four datasets.
As shown in Table 3, our method significantly outperforms other
baselines. The performance of walk2friend is highly dependent on
random walks, which become inefficient on large datasets, leading
to weak results. Heter-GCN relies on positive pairs selected through
manually crafted features, causing poor generalization across vari-
ous datasets. In contrast, our SET module automatically adapts to
new datasets without predefined rules. Meanwhile, it avoids the
computational overhead of graph embedding methods, resulting
in better scalability. Finally, we compare our SET module to other
embedding transfer methods. All approaches use the same transfer

framework and the same pre-trained USRC model, so the focus here
is on the alignment quality of the embedding space. Table 4 reports
each model’s average PR-AUC and ROC-AUC performance, using
the dataset indicated in the table’s column for training. The values
shown represent the average zero-shot results across the remaining
four datasets for each column.

Table 4 shows that our transfer method consistently outperforms
all other embedding alignment baselines across every dataset, and it
is the only approach that achieves performance on par with super-
vised methods. Additionally, we observe that embedding mapping
strategies (HBP, HBA,WAlign) generally outperform network align-
ment techniques (LSNA, SANA, HyperGAN), suggesting that an
exact match between target and source distributions is not neces-
sary; a more flexible mapping function can yield a more suitable
target distribution.

The spatial and temporal granularity of human mobility datasets,
as well as the quality of the social relationship network, are two
important factors that influence the performance of the proposed
transfer method. The Foursquare dataset has a much denser check-
in frequency than Gowalla, therefore, the overall transfer perfor-
mance between these two datasets is lower than that achieved
within the same dataset across different cities. Meanwhile, the
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Table 5: Zero-shot inference comparison of variants of the SET module

Method Gowalla_LA Gowalla_NY Gowalla_ST Foursquare_LA Foursquare_NY
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

Random 0.1934 0.5953 0.1991 0.5805 0.1408 0.5599 0.1251 0.5463 0.1331 0.4969
Structural 0.2859 0.6843 0.2616 0.6551 0.1920 0.5982 0.3081 0.6906 0.2749 0.6734
Global 0.4381 0.8342 0.3831 0.7777 0.2283 0.6202 0.3211 0.6861 0.3068 0.7243
SET 0.5400 0.8640 0.4410 0.8153 0.4760 0.8055 0.5266 0.8332 0.5140 0.8254

Gowalla_ST dataset contains a dense and high-quality social rela-
tionship network, resulting in the best transfer performance when
used as either the target or the source city.

5.6 Ablation Study
Table 5 presents an ablation study of our SET module components:

• Random – The USRC frozen model uses completely random
location embeddings.
• Structural – The Global Finetuning module is removed, so
embeddings rely only on Spatial Initiation and Structural
Matching, capturing location popularity but not co-location/visit
information.
• Global – Instead of using embeddings from Structural Match-
ing, a randomly initialized layer is passed into the Global
Finetuning module—representing the opposite scenario in
which co-location/visit information is prioritized while loca-
tion popularity alignment is omitted.

As observed from Table 5, models that take random embeddings
as location features cannot perform well in social relationship infer-
ence because random embeddings cannot capture location informa-
tion, such as popularity and connectivity. Therefore, although the
frequency of co-visits and co-location contains information about
whether two people are friends, where people meet plays a more
critical role in inferring their social connectivity. Another observa-
tion is that both Structural Matching and Global Finetuning can
successfully align location embeddings to the source space. This
indicates that both location information (e.g., popularity, connectiv-
ity with other locations) and co-location patterns are important for
social relationship inference. The high-quality alignment of SET
module is achieved by integrating information from both aspects.
Structural Matching provides fundamental location information,
offering a suitable initialization for Global Finetuning. After the
initialized embeddings capture essential mobility patterns shared
across datasets, Global Finetuning refines the alignment by learning
unique co-location patterns specific to the dataset, achieving the
best matching.

5.7 Parameter Sensitivity
To analyze the effects of hyperparameters of the SET, we use a USRC
model trained on the Gowalla_LA dataset and transfer it to other
datasets with different parameter settings. The results are compared
by measuring the average performance of the model on the other
datasets. We analyze two important hyperparameters of the SET:
𝛼 , the ratio of locations selected as anchor points during Spatial
Initiation; and 𝑏𝑠 , the batch size used during Global Matching. The
results are shown in figure 3.

(a) Anchor point ratio 𝛼 (b) Global Matching batch size 𝑏𝑠

Figure 3: Overall model performance on different hyperpa-
rameter settings.

As we can see from Figure 3(a), the alignment quality does not
continue to improve as the number of anchor points increases. The
best performance is achieved when 60% of the locations are selected
as anchors, while the remaining 40% remain flexible. The flexibility
preserved during the Spatial Initiation supports our assumption
that different datasets have different embedding distributions and
improves the effectiveness of the subsequent Structural and Global
Matching.

As shown in Figure 3(b), the Global Matching module produces
the most distinguishable location embedding distribution when the
batch size is 4. In contrastive learning, a larger batch size typically
provides more negative samples, which encourages the model to
learn more generalizable embeddings. However, our objective is not
to learn general-purpose representations, but rather to fine-tune
the model to closely align with the specific embedding distribution
of the pretrained USRC model. A smaller batch size facilitates this
alignment by limiting the diversity of negative samples, allowing
the model to focus on fine-grained distinctions that are more rel-
evant to the USRC model-specific embedding space. In particular,
it encourages the model to concentrate on matching the distribu-
tional characteristics of the pretrained embeddings rather than
being regularized by a large number of uninformative negatives.
Consequently, this leads to more specialized and discriminative
representations tailored to our target task.

5.8 Computational Complexity
In this section, we analyze the computational complexity of SET.
The complexity of Spatial Initiation is 𝑂 (𝑁𝐿 + 𝐿 log𝐿 + 𝐿2 log𝐿),
where N denotes the number of users, and L denotes the number
of locations. The complexity for Structural Matching is 𝑂 (𝜏𝑘𝐿2),
where k denotes the average number of neighbors of a location in
OD graph. The complexity of Global Matching is 𝑂 (𝑏𝑠2𝑁 ). Since
the number of epochs 𝜏 and the batch size 𝑏𝑠 are generally small
compared to the number of users and locations, they can be consid-
ered constants in this analysis. Therefore, the overall complexity
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is: 𝑂 (𝑁𝐿 + 𝐿 log𝐿 + 𝐿2 log𝐿 + 𝑘𝐿2 + 𝑁 ). Given that the alignment
process is a one-time cost and eliminates the need to train a new
friendship inference model, the time cost of the SET module is ac-
ceptable, especially compared to the time required to train a model
from scratch.

We also consider the computational resources required during
alignment. Graph-based embedding alignment methods, including
LSNA, SANA, WAlign and HyperAlign, typically require the entire
graph to be loaded into GPU memory for computation. From the
dataset statistics, we know that the size of such a graph is 𝐿2. Since
the number of locations 𝐿 is typically large for most datasets, the
enormous memory cost of the backward propagation renders these
methods difficult to use in practice. In our experiments, we found
that it was not feasible to run these methods on a GPUwith 80 GB of
memory for the Foursquare_NY dataset, which has 33,128 locations.
In contrast, our method does not rely on full-graph computation. By
breaking the alignment process into multiple steps, we significantly
reduce memory requirements and achieve alignment with much
lower GPU usage. In practice, the whole transfer process takes no
more than 10 minutes on all experimental datasets.

6 Conclusion and Future Directions
In this paper, we proposed a transferable social relationship in-
ference framework, which includes a trajectory-based social rela-
tionship inference model (USRC) and a spatial embedding transfer
method (SET). The spatial embedding transfer is conducted in an
unsupervised manner by leveraging information extracted from
trajectory data. It maps the location embedding distribution of the
target dataset to the source embedding space, which the relation-
ship inference model has been trained on. This enables the model
to transfer the knowledge it learned from a labeled dataset to unla-
beled ones. Different from other domain adaptation methods that
assume embeddings should be aligned perfectly, we build on our
assumption that each city could have its own feature space distri-
bution. This unique distribution can be learned from the human
mobility pattern of the dataset. By leveraging the power of con-
trastive learning, we can approximate this distribution and boost
the performance of the downstream model. Through experiments
on five publicly available real-world datasets, our method demon-
strates exceptional transferability. Notably, the zero-shot inference
performance of the model, when trained on a high-quality dataset,
surpasses that of the supervised inference methods. Our findings
serve as a promising step toward the development of a geospatial
foundation model, one that can be trained on large-scale, high-
quality data while remaining highly generalizable across a broad
range of datasets and downstream tasks.

Due to the sensitivity of location data and social relationship
networks, current research is constrained by the limited availability
of datasets with diverse granularities, such as CDR data or datasets
including the specific type of social relationships (e.g., colleagues,
friends, family). Exploring such datasets would be a valuable direc-
tion for future research. Moreover, incorporating richer contextual
information into spatial transfer learning could enable modeling the
correlation between spatial context and human mobility patterns,
offering another promising research direction.
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