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ABSTRACT
Geothermal energy is a renewable and environmentally sustainable resource of increasing 
importance. However, areas with geothermal potential are not easily detected by traditional 
field investigations, requiring the development of new, robust, and reliable models for detection. 
In this study, remote sensing data and ground-based variables were used to detect and analyze 
geothermal resource potential areas. General Land Surface Temperature (GLST) was integrated 
using 5 years of remote sensing data. Landsat 8 daytime GLST (Landsat-GLST), Moderate 
Resolution Imaging Spectroradiometer (MODIS) daytime GLST (MODIS-DLST), and MODIS night
time GLST (MODIS-NLST) data were integrated with Landsat Nighttime Land Surface Temperature 
(Night-LST), which not only filled the gap of Landsat Night-LST but also improved the spatial 
resolution of MODIS nighttime temperatures. Specifically, three independent variables (Night- 
LST, Distance From Known Geothermal Resource Points [DFGP], and Distance From Geological 
Faults [DFF]) were used to develop a weighted model to form a Geothermal Detection Index (GDI) 
based on Principal Component Analysis (PCA). Along with field verification, the GDI was success
fully used to identify three geothermal activity areas in Tengchong City, Yunnan Province. Overall, 
this work provides a novel method for detecting geothermal potential to support the successful 
exploitation of geothermal resources.

KEYWORDS 
Geothermal Detection Index 
(GDI); geothermal potential; 
Principal Component 
Analysis (PCA); Land Surface 
Temperature (LST)

1. Introduction

With the recent increase in serious environmental pro
blems, such as climate change and the depletion of tradi
tional resources, the development of renewable energy 
sources, such as geothermal, solar, wind, and biomass, 
has intensified considerably. In particular, geothermal 
resources offer pollution-free and stable energy sources 
(T. Abbasi and S. Abbasi 2012; Kurek et al. 2021; Rezaie 
and Aghajani 2013; Van der Meer et al. 2014) that can 
effectively meet energy demands with minimal environ
mental impact (Chen and Xu 2013). Geothermal energy 
has been successfully harnessed on a large scale for space 
heating, industry, and electricity generation for many 
years (Ingvar 2001); however, uncertainty encountered 
in previous geothermal investigations has raised many 
problems (Jennejohn 2009). Therefore, it is particularly 
important to develop robust models that can detect 
geothermal activity and resource potential.

Previous studies have shown that suitable assess
ment criteria for geothermal potential include distance 
to mineral alteration zones, volcanic rock, faults, and 

hot springs; earthquake distributions; and magnetic 
anomaly distributions (Sun et al. 2012; Meng et al.  
2021; Moghaddam et al. 2013, 2014; Mcguire et al.  
2015; Li and Zhang 2017; Zhang et al. 2020). 
However, active geothermal fields often exhibit tem
perature anomalies at the ground surface because of 
heat and mass transfer processing from volcanic activ
ity, hot springs, mud pots, or fumaroles (Tian et al.  
2015). Currently, most studies detect geothermal 
activity by focusing on two criteria, namely geological 
structures and Land Surface Temperature (LST). 
Indeed, LST is a key parameter in the physics of land 
surface processes at regional and global scales (Zhang 
and He 2013; Wang et al. 2019; Gemitzi, Dalampakis, 
and Falalakis 2021; Li et al. 2021; Li, Xu, and Yao  
2021). For example, Saepuloh et al. (2020) using The 
Thermal Infrared Red (TIR) of the Advanced 
Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) data, Synthetic Aperture Radar 
(SAR) images, and ground data explored the relation
ship between surface temperature and roughness and 
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identified the geothermal steam spots. Romaguera 
et al. (2018) explored the possibility of using two 
types of LST time series to detect geothermal anoma
lies and extract the geothermal component of LST.

The geothermal potential of areas within the Akarcay 
Basin in Turkey was also determined using a GIS-based 
Multi-Criteria Decision Analysis Method (MCDA), with 
hot springs reliably predicted as having geothermal 
potential (Yalcin and Gul 2017). Similarly, in 
Hokkaido, Japan, a geostatistical approach combined 
with TIR remote sensing data and three-dimensional 
(3D) temperature modeling based on well measurements 
was used for geothermal exploration (Tian et al. 2015). 
Zhang et al. (2020) identified and classified potential 
geothermal areas based on geothermal, geological, and 
geophysical spatial associations in Fujian Province, 
China. Based on the GIS supported weight-of-evidence 
model and fuzzy logic model, the geothermal prediction 
maps were established using the impact factor maps.

Rich data on the causes of Tengchong magma heat 
source geothermal resources. Qin et al. (2011) inversed 
the surface temperature by using the single-channel 
algorithm on the thermal infrared band, and identified 
four geothermal regions consistent with the fault devel
opment in Tengchong. Zhang et al. (2012) used remote 
sensing and Geographic Information System (GIS) for 
geothermal exploration in Tengchong, Yunnan 
Province, SW China. Xiong, Chen, and Huang (2016) 
used elevation information partition to identify the 
abnormal surface temperature areas and circled the 
geothermal abnormalities in Tengchong; Tang, Li, and 
Liu (2017) determined geothermal abnormal areas in 
Tengchong by eliminating the shadow influence and 
inversing the temperature.

In particular, Landsat datasets provide a unique 
opportunity for global-scale surface temperature assess
ment with more than 30 years of archived imagery, 
including TIR (Roy et al. 2014; Weng and Fu 2014; 
Weng, Fu, and Gao 2014; Cristóbal et al. 2018; 
Saepuloh et al. 2020). Over the past decade, LST derived 
from Landsat remote sensing data has been successfully 
used to assess geothermal potential (e.g. Li et al. 2014; 
Gemitzi, Dalampakis, and Falalakis 2021). More 
recently, LST methods including the split-window 
method (Becker and Li 1990; Wan and Dozier 1996), 
the single-channel method (Jiménez-Muñoz and 
Sobrino 2003), and radiative transfer equation-based 
methods have been developed. Moreover, obtaining 
LSTs using the radiative transfer equation-based 
method based on Band 10 has been verified as the 
approach providing the highest level of accuracy with 
Root Mean Square Errors (RMSEs) of <1 K (Yu, Guo, 
and Wu 2014). LST products of MODIS have been 
widely used in a range of research fields. This includes 
Li et al. (2012), who used multi-temporal nighttime 
MODIS LSTs to identify geothermal anomalies that 
show good agreement with relative geothermal gradient 

measurements. Furthermore, using historical data, LST 
models can be built to predict daytime temperature 
(Hengl et al. 2012). MODIS LST data have also been 
successfully combined with Landsat 8 data to improve 
the accuracy of LST measurements derived from satel
lites (e.g. Zhao et al. 2020).

In this study, we sought to build on this existing work 
by improving data quality and accuracy to better inform 
geothermal exploration. Specifically, as Landsat 8 LST 
data have a high spatial resolution, and MOD11A2 LST 
products contain both daytime and nighttime data, we 
combined these products to retrieve high-resolution 
nighttime LSTs. In addition, we developed a weighted 
principal component model to evaluate geothermal 
potential by combining Night-LST with geotectonic fac
tors, which concluded that DFGP and DFF are useful 
indicators of geothermal potential. Tengchong City, 
Yunnan Province, located in Southwest China, is extre
mely rich in geothermal resources due to its geological 
structure. We take this county as an example for research.

2. Study area

Tengchong County is located in southwest Yunnan 
Province (Figure 1), Southwest (SW) China, with a total 
area of 5,845 km2. This area sits at the intersection of the 
Eurasian and Indian Plates with 84% of the land area 
covered by mountains (Wei et al. 2003). The terrain is 
high in the north and low in the south, and the mountains 
run Northeast-west and North-south, which is basically 
the same with the regional structural line. The formation 
development in the study area was incomplete due to the 
new and Mesozoic magmatic activity, the lower Paleozoic 
formation was absent in the study area, only development 
Proterozoic rocks, Paleozoic rocks, Mesozoic rocks, 
Neogene rocks, and Quaternary sediments. Formation 
exposure is relatively sporadic and has poor continuity 
due to granite intrusion in different periods. Quaternary 
volcanic and fault structures are the most prominent 
characteristics of the region at present. The active faults 
in the Northeast, North, Northwest, and South of the 
region have developed well and are conducive to geother
mal formation (Du et al. 2005）. The county is charac
terized by frequent tectonic-thermal events, seismic 
activity, and active faults, with more than 70 volcanic 
craters of different sizes and 140 hot springs (Wan, 
Zhao, and Kang 2005). As a famous volcanic and hot 
spring geothermal area, Tengchong displays a wide dis
tribution of volcanic rocks and hot geothermal fields.

3. Input ata

3.1. Remote sensing data

Remote sensing data, including Landsat 8 and 
MODIS, were the main focus of this study. The 
obtained images (Table 1) were free from cloud and 
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snow cover. The geological structure map of the 
Tengchong area was obtained from the China 
Geological Survey, and land survey results for 
Tengchong County (2011) were obtained from the 
Land Management Department of Tengchong City. 
The verification data we used were from other studies 
(Li and Zhang 2017; Guo 2012; Ba 2017). Information 
about the Rehai geothermal field was also obtained 
from field surveys.

3.2. Distance from sites with known geothermal 
activities (DFGP)

To date, 64 sites of geothermal activity have been 
identified in the Tengchong area. These sites are 
mainly hot springs that have been explored by resi
dents and opened to the public as tourism sites. Here, 
we determined 60 sites with strong geothermal activ
ity, with a high probability that currently unknown 
geothermal activity exists around the known geother
mal resource points. Therefore, the probability of 

geothermal activity decreases with distance from exist
ing geothermal hotspots. Based on this, we generated 
a DFGP raster file showing the distance between each 
pixel and known geothermal hotspots (Figure 2(a)).

3.3. Distance from faults (DFF)

Previous studies of geothermal resources in the 
Tengchong area have found that the fault structure 
controls the spatial distribution of geothermal activity, 
and high-temperature geothermal areas are concen
trated at the intersection of faults. In the studied 
region, the active faults are predominantly north– 
south oriented (Shangguan, Bai, and Sun 2000). 
Correspondingly, the spatial distribution of geother
mal heat is banded and curved following an anasto
mosing pattern consistent with the fault-line 
geomorphology. We created a DFF raster file based 
on the distance of each pixel from geological fault lines 
(Figure 2(b)). Note that fault depth was not 
considered.

Figure 1. Location of Tengchong County, Yunnan Province, China.

Table 1. Remote sensing data used in this study.
RS Data Year Month Bands/Products Spatial Resolution

Landsat 8 2015–2019 January/February Band 4 (Red: 0.630–0.680 μm)/ 
Band 5 (NIR: 0.845–0.885 μm)/ 
Band 10 (TIRS 1: 10.60–11.19 μm)

30 m/100 m

MODIS 2015–2019 January/February MOD11A2 Daily LST data 1 km
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4. Methodology

4.1. Technical framework

Night-LSTs were obtained by integrating Landsat 
8 daytime General Land Surface Temperature 
(GLST; Landsat-GLST), MODIS Daytime GLST 
(MODIS-DLST), and MODIS Nighttime GLST 
(MODIS-NLST) with DFF and DFGP input data. 
From this, we developed a geothermal detection 
model based on a PCA weighting method 
(Figure 3).

4.2. Remote sensing data processing

4.2.1. LST retrieval
LST results from solar radiation and the energy emitted 
back from beneath the Earth’s surface. To detect 
geothermal resources, the effect of solar radiation can 
be subtracted from the total thermal radiation observed 
by the satellite sensor. The obtained thermal radiation 
intensity can then be converted into LST, which pro
vides a scientific basis for the detection of potential 
geothermal resources. Current algorithms for retrieving 

Figure 2. Raster files showing (a) distance from known geothermal resource points (DFGP) and (b) distance from faults (DFF).

Figure 3. Overall workflow adopted to detect geothermal potential.
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surface temperature from remote sensing data include 
the radiative transfer equation method, single-window, 
and split-window algorithms, as well as multi-channel 
and multi-angle algorithms, among others. The radia
tive transfer equation method, also known as the atmo
spheric correction method, is mainly based on the 
composition of the thermal radiation intensity received 
by the thermal infrared satellite sensor. The algorithm 
subtracts the atmospheric influence factor and calcu
lates surface temperature, using the relationship func
tion between thermal radiation intensity and surface 
temperature. The radiation flux received by Landsat 8 
Thermal infrared Sensor (TIRS) is mainly composed of 
surface heat radiation, atmospheric upward heat radia
tion, and atmospheric downward heat radiation, which 
are partially reflected by the sensor. The expression of 
the thermal infrared radiance received by the sensor can 
be written as (Sobrino, Jimenez-Munoz, and Paolini  
2004): 

Lλ ¼ τεB Tsð Þ þ τ 1 � εð ÞL# þ L" (1) 

where Lλ is the radiance received by the thermal infra
red sensor (W �m� 2 � sr� 1 � μm� 1), ε is the specific 

surface emissivity, B Tsð Þ is the thermal emission of 
a blackbody as expressed by Planck’s law, L# and L"

are the downward and upward radiation intensities of 
the atmosphere, respectively (W �m� 2 � sr� 1 � μm� 1), 
and τ is the atmospheric infrared transmittance. The 
upward and downward radiation and transmittance of 
the atmosphere were obtained, using the atmospheric 
correction parameter calculator provided by the 
National Aeronautics and Space Administration 
(NASA) https://atmcorr.gsfc.nasa.gov (Barsi et al.  
2005). Black body luminance can be obtained from 
the formula (2): 

B Tsð Þ
1
¼

Lλ � τ 1 � εð ÞL# � L"
� �

τε
(2) 

The relationship between radiation energy, tempera
ture, and wavelength within the specifications of TIRS 
10 can be simplified according to Planck’s law, as 
follows: 

B Tsð Þ ¼ K1=ðeK2=Ts � 1Þ (3) 

Ts ¼ K2=ln K1=B Tsð Þ þ 1ð Þ (4) 

where Ts is the surface temperature, 
K1 ¼ 774:89W �m� 2 � sr� 1 � μm� 1, K2 ¼ 1321:08K, 
based on previous studies (Van der Meer et al. 2014) 
on the range and spectral response function of 
TIRS 10.

Subsequently, specific surface emissivity ε and the 
radiance received by thermal infrared sensor Lλ can be 
calculated. Lλ can be directly obtained by radiometric 
calibration of the thermal infrared band 10. The pro
cesses of temperature retrieval by the radiation 

transmission equation method are shown in 
Figure 4. Land-specific surface emissivity, or emissiv
ity, refers to the ratio of the radiation emitted by a land 
surface to the radiation emitted by a blackbody at the 
same temperature (Li et al. 2013).

This ratio is determined by surface composition, 
roughness, the observed range of wavelengths, and 
other factors. Remote sensing images are mainly com
posed of water, urban land use, and natural land 
surfaces. Natural land surfaces, covered by different 
types of vegetation, differ in their specific emissivity. 
One of the most common classification indices, which 
was also used in the present study, is the Normalized 
Difference Vegetation Index (NDVI). As NDVI is 
a normalized index, the calculation error from atmo
spheric influence on NDVI is not very large. In the 
case of the present study, the surface temperature 
error caused by NDVI remained less than 0.1 
K. NDVI can be obtained directly by the Operational 
Land Imager (OLI) B4 and B5 after radiometric cali
bration. The proportion of ground covered by vegeta
tion is closely related to the temperature ratio and 
specific surface emissivity of land surfaces. Thus, 
NDVI can be used to estimate vegetation coverage 
Pv, as follows (Sobrino, Jimenez-Munoz, and Paolini  
2004): 

Pv ¼
NDVI � NDVImin

NDVImax � NDVImin
(5) 

where NDVImin represents the minimum value of 
NDVI without vegetation, and NDVImax is the max
imum value for an area completely covered by vegeta
tion. For the calculated NDVI values, a certain amount 
of noise is inevitable, for this reason NDVImax and 
NDVImin generally are reported within their respective 
confidence ranges. However, for the calculation of 
vegetation cover using equation (5), it is assumed 
that the pixel value is 1 if NDVI>NDVImax and it is 0 
if NDVI<NDVImin.

For the calculation of land surface emissivity, the 
specific emissivity of typical ground objects can be 
represented by an estimate, and the band 10 thermal 
infrared band of TIRS and Thematic Mapper/ 
Enhanced Thematic Mapper (TM/ETM +) 6 thermal 
infrared band have similar spectral range, so the same 
calculation method of surface emissivity of TM/ETM 
+6 is used in this study. In addition, Yu, Guo, and Wu 
(2014) used a single band for surface temperature 
inversion, and found that the band 10 was relatively 
Band 11 has high inversion accuracy.

In this study, LST products of MODIS were used to 
evaluate if the LST results from Landsat imagery were 
reliable and used to synthesize the night land surface 
temperature data combining the Landsat land surface 
temperature. MOD11A2 Daytime LST products pro
vide per-pixel Land Surface Temperature and 
Emissivity with 1-km spatial resolution. It included 
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Daytime Land Surface Temperature, Nighttime Land 
Surface Temperature, Daytime LST Quality 
Indicators, and other data layers. To obtain LST data, 
it is necessary to extract the corresponding layers from 
MOD11A2 products. For this study, the MODIS 
Reprojection Tool (MRT) (Dwyer and Schmidt 2006) 
software was used to re-project the MOD11A2 data 
and convert the default Hierarchy Data Format-Earth 
Observation System (HDF-EOS) data format to 
GeoTIFF. To reduce the required storage space, the 
LST product needed to undergo a numerical conver
sion process. To obtain LST in degree Celsius, 
MOD11A2 raw data had to be converted as follows: 

Tm ¼ DN � Scalefactor � 273:15 (6) 

where Tm is the ground temperature in degree Celsius, 
DN is the raw value from the LST_Day_1km layer of 
the MOD11A2 product, and Scalefactor is the propor
tional coefficient for the product, in this case, 0.02.

MODIS LST products were used to evaluate whether 
the LST results obtained from the Landsat imagery were 
reliable, which were then used to synthesize the Night- 
LST data. First, the corresponding layer was extracted 
from the multiple data layers of the MOD11A2 LST 
product. The MRT was then applied to convert the 
default data format to GeoTIFF. The MOD11A2 raw 
data were also converted to degree Celsius.

4.2.2. Construction of GLST
As the LST data for 1 year cannot accurately reflect 
true LST due to complex variability over a range of 
timescales, a composite of remote sensing data for 
5 years was used to synthesis based on the standard 

deviation. Thus, the standard deviations for LST 
from 2015 to 2019 were used to determine surface 
temperature anomalies at different points in time, 
thereby representing more generalized surface tem
perature conditions. The weighted and synthesized 
LST estimates were calculated as follows: 

Wi ¼
Si

S1 þ S2 þ . . .þ Si
(7) 

GLST ¼W1T1 þW2T2 þ . . .þWiTi (8) 

where Wi is the weight of the ith image, Si is the 
standard deviation of the ith image, Ti is the LST 
obtained from the i-th image, and GLST is the com
prehensive temperature.

Comparisons of Landsat-GLST, MODIS-DLST, 
and MODIS-NLST data are shown in Figure 5 and 
Table 2. Although the selected data were from the 
same period, there was some deviation due to 
slight differences in the acquisition times and tem
perature-retrieval algorithms. Nevertheless, in gen
eral, the spatial pattern of pixel values was in good 
agreement between Landsat-GLST and MODIS- 
DLST. High-temperature anomalies were concen
trated in similar regions, indicating that tempera
ture results are reliable. Therefore, the spatial 
distribution of the measured temperature range 
still has reference value, and the comparison 
demonstrated that the results from remote sensing 
data were reliable, especially the occurrence of 
high-temperature anomalies in the eastern farm
land area. For MODIS-NLST, the spatial pattern 
was different from that of the DLST values, which 
reflects the intensity of insolation, the different 

Figure 4. The workflow of LST retrieval, using the radiative transfer equation-based method.
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types of land cover, and the influence of human 
activities. Take Rehai geothermal field as an exam
ple in Figure 5, the Landsat-GLSTs and MODIS- 
DLSTs are broadly similar, although there are still 
some differences due to the higher spatial resolu
tion of the MODIS-DLST dataset. In comparison, 
the pattern of MODIS-NLSTs is quite different 
from the other two datasets. This shows that the 
surface temperature during the day is affected by 
other external factors and cannot accurately reflect 
the geothermal conditions, so it once again proves 
that the surface temperature at night is more 
reflective of the abnormal geothermal activities. 
Compared to the MODIS-DLSTs in Table 2, the 
temperature range is greater in the Landsat data
set, with a maximum of 30.34°C and a minimum 
of 5.29°C, although the average temperature is 
similar to that of the MODIS-DLST dataset. As 
expected, the nighttime LSTs are generally much 
lower than the daytime values. As a result, these 
statistical data once again prove that the use of 
Landsat data can more effectively detect geother
mal abnormal areas.

4.2.3. GLST verification
To verify the LST estimates, the RMSE (Fridleifsson  
2001), Mean Absolute Error (MAE) (Willmott and 
Matsuura 2005), and Structural Similarity Index 
Measure (SSIM) (Qin et al. 2004) were used to evalu
ate the consistency between the GLST values. For the 
comparison of Landsat-GLST and MODIS-DLST, the 
RMSE indicated abnormal values in the image. In 
comparison, the MAE was less than 3°, indicating 
that the errors of the two images were small. Finally, 
the SSIM was 0.91, which shows that the structural 
similarity between the two images was very high 
(Figure 6(a)). Based on these results, the reliability of 
the temperature retrieval method was confirmed, 
including support its use for the synthesis of Night- 
LSTs. In addition, the difference between MODIS day
time temperature data and nighttime temperature data 
was more pronounced in high-temperature regions.

4.2.4. Construction of Landsat Night-LST
Based on the comparison and verification of the GLST 
data and to eliminate the influence of the spatial reso
lution of the MODIS dataset and compensate for the 

Figure 5. Comparison of GLST (a) Landsat-GLST; (b) MODIS-DLST; and (c) MODIS-NLST.

Table 2. Summary statistics for Landsat-GLST, MODIS-DLST, and MODIS-NLST datasets.
GLST Data Maximum (℃) Minimum (℃) Mean (℃) Standard Deviation

Landsat-GLST 30.34 −5.29 13.24 3.39
MODIS-DLST 23.45 4.67 14.64 2.83
MODIS-NLST 9.62 −2.19 4.46 1.89

GEO-SPATIAL INFORMATION SCIENCE 7



lack of Landsat nighttime surface temperature data, 
Landsat 8 nighttime LST inversion was performed as 
follows: 

Wm ¼
Mn � Md

Md
(9) 

Ln ¼ Ld þWm � Ld (10) 

where Wm is the weight, Mn is MODIS-NLST, Md 
is MODIS-DLST, Ln is the Night-LST, and Ld is 
Landsat-GLST.

4.3. PCA

PCA is a powerful multivariate statistical method that 
is commonly applied in a wide range of areas (Bro and 
Smilde 2014). PCA can reassemble a group of multiple 
independent variables into a new, smaller set of vari
ables that retain as much of the information contained 
in the original data as possible. The new, condensed 
variables are called principal components. In the pro
cess of synthesizing multiple independent variables to 
detect geothermal resources, it is difficult to determine 
the magnitude of each factor’s role in the process, 
which affects the detection capability of final results. 
PCA can effectively eliminate redundant information 
and determine the impact weight of each influencing 
factor to construct the detection model. Before per
forming PCA, an original sample matrix needs to be 
constructed. For this purpose, the study area was ran
domly divided into n blocks. A matrix X is established 
by using the average values of N influence factors in 
n regions as an index for the principal component 
analysis. The ith column vector of matrix X is the 
sample column vector xi (i = 1,2, . . . N). The column 

vectors are used to compute the correlation coefficient 
matrix R of matrix X as follows: 

RN�N ¼
Cov Xi;Xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
DðXiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
DðXjÞ

p ði; j ¼ 1; 2 . . . ;NÞ (11) 

where Cov Xi Xj
� �

is the covariance matrix, composed 
of the covariances of Xi and Xj. D Xið Þ and D Xj

� �
are 

the variances of the corresponding column vectors. 
The column vectors can also be normalized to mean 
0 and variance 1, resulting in a correlation coefficient 
matrix: 

X
0

i ¼
Xi � Mean Xið Þ

Std Xið Þ
(12) 

RN�N ¼ Cov X
0

i;X
0

j

� �
(13) 

where Mean Xið Þ and Std Xið Þ are the averages and 
standard deviations of the sample variables Xi, and 
X0i is defined as a positive standard matrix. 
Subsequently, the eigenvalues and eigenvectors are 
obtained from the correlation coefficient matrix R by 
solving the equation: 

R � λEj j ¼ 0 (14) 

R � λiEð Þx ¼ 0 (15) 

where λ is the N eigenvalues of the matrix R and x is 
the eigenvector that corresponds to the eigenvalue λi(i  
= 1,2, . . ., N). Arranging the eigenvalues from largest 
to smallest (λ1; λ2; . . . ; λN), the variance contribution 
rate g and the cumulative variance contribution rate 
G are calculated. The higher the cumulative variance 
contribution rate is, the lower the number of resulting 
principal components, which in turn indicates that 
less information has been lost. In general, eigenvalues 

Figure 6. (A) Comparison of Landsat-GLST and MODIS-DLST; (b) Comparison of MODIS-DLST and MODIS-NLST.
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with a cumulative variance contribution over 80% 
should be selected as main components, as in this 
case the quantity m of the principal component should 
be satisfied: 

Pm
i¼1 λi

PN
i¼1 λi

¼
g
G
� 85% m � Nð Þ (16) 

The eigenvector xi corresponding to m principal com
ponents is used as the coefficient of the comprehensive 
score model, and the weight of each influencing factor 
can be determined as follows: 

Wi ¼

Pm
j¼ 1 xijgj
Pm

j¼ 1 gj
(17) 

wi ¼
Wi

PN
j¼ 1 Wj

(18) 

where xij is the linear combination coefficient of the i- 
th influencing factor in the j-th principal component, 
gj is the variance contribution rate of the j-th principal 
component, wi is the standardized result of the weight 
Wi of the i-th influencing factor.

4.4. GDI

The GDI was calculated based on the weight of each 
influencing factor, where the weighted average opera
tor of each factor is: 

GPI ¼
XN

i¼1
wici (19) 

where ci is an influencing factor for detecting geother
mal activity, and wi represents the weight of each 
factor. Based on the PCA results, DFF, DFGP, and 
Night-LST were selected as the influencing factors to 
calculate the GDI.

5. Results and validation

5.1. Spatial pattern of Night-LST

Night-LST data are shown in Figure 7(a) and summar
ized in Table 3. Compared with the MODIS-NLSTs, 
Night-LST shows good spatial consistency with similar 
high-temperature anomalies in association with some 
human activity and farmland areas in the south. The 
temperature range of the Night-LST dataset is relatively 
large, but the average and standard deviation are broadly 
the same as the MODIS-NLST dataset. There is a certain 
degree of difference in the spatial pattern of LSTs between 
the nighttime and daytime values. This difference may be 
due to the impact of human activity and the heat island 
effect, i.e. the relatively higher temperature of urban 
surfaces in some cities compared to other areas. Thus, 
the inversion data of the Night-LST were available. 
Importantly, based on the identification of areas with 
abnormal Night-LSTs, geothermal resource potential 
can be effectively detected.

Figure 7. (A) Spatial pattern of Night-LST; (b) Classification of land cover based on Random Forest classification. The two images in 
the middle are detailed enlargements of the areas indicated.

Table 3. Summary statistics for Night-LST.
Data Maximum (℃) Minimum (℃) Mean (℃) Standard Deviation (℃)

Night-LST 14.25 −6.21 4.04 1.83
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Figure 7(b) shows a land-use classification map 
based on Landsat 8 multispectral data combining the 
NDVI, Normalized Difference Built-up Index (NDBI), 
texture analysis, and regions of interest obtained using 
the Random Forest classification. Figure 7(b) is used 
as a qualitative analysis to assist in interpreting the 
types of land cover in the study area. Based on the 
Night-LST dataset, the high-temperature areas are 
mainly concentrated in the vegetated and farmland 
areas as well as around some cities in the south. For 
example, the Panzhihua geothermal field in the south 
with high-temperature anomalies (Figure 7) is mostly 
by natural vegetation and cropland.

5.2. The results of PCA

I propose creating a map of 10 × 10 fishing net statistical 
zones, generating 78 regions, and a correlation coeffi
cient matrix was established for the independent vari
ables. The correlation coefficients and eigenvalues along 
with their variance contribute rates are shown in 
Table 4, and eigenvectors are shown in Table 5. The 
resulting two eigenvalues had a cumulative variance 
contribution rate of 88.6%. The weights of the first 
two component influencing factors were calculated 
using their corresponding two eigenvectors (Table 5). 
According to previous studies, DFF, DFGP, and Night- 
LST have associations with geothermal resources, and 
they are similar to the content expressed by the first 
principal component. Therefore, the first principal 
component was considered to contain information 
relating to three influencing factors.

5.3. Spatial pattern of GDI values

The GDI results are shown in Figure 8, with high values 
concentrated around cropland and urban areas, which 
indicates that (i) human activity is concentrated in areas 
of higher geothermal activity and (ii) the heat produced 
by human activity may alter Night-LST patterns. 
Outside of the urban areas, high GDI values indicate 
key areas for further geothermal exploration, with three 

geothermal potential areas identified. The first area 
(area “a” in Figure 8) is centered on the Langpu and 
Rehai thermal fields, mainly covered by vegetation and 
with human activity, with existing developed geother
mal activity points. The second area is located around 
the Panzhihua and Heishihe thermal fields (area “b” in 
Figure 8), where geothermal activities are already devel
oped and faults are relatively concentrated. The third 
area is located around Beihai thermal field (area “c” in 
Figure 8) in association with the north-south Dazhai- 
Longjiaying-Jiuzhai Fault. There are also some areas 
with the potential for geothermal exploitation in the 
Ruidian thermal field.

Based on Figure 8, the GDI values in Tengchong 
range between 0.3 and 1.6 and the area with values 
between 1.3 and 1.6 were chosen as the area of geother
mal development potential. Land-use data for this area 
are shown in Table 6, with almost half of the pixels 
indicating vegetation cover and approximately 41% 
cropland cover; areas of other human activity 
accounted for less than 10%. The altitude range of 
Tengchong County is 971.76 m to 3671.19 m. 
Compared to the elevation of the entire county, the 
average elevations of areas with GDI values ranging 
from 1.3 to 1.6 are relatively close, with the highest 
average elevation located in vegetation areas, followed 
by cropland. The lowest average elevation is in water
body, followed by buildings. This is more in line with 
reality. For the average GDI value, the five types of land 
cover are 1.36 and 1.37. Therefore, the data analysis in 
the comprehensive table, most of these areas, which 
indicate rich geothermal resources, has not yet been 
developed. In view of some vegetation-covered areas 
with high altitude are difficult to develop, and the large- 
scale development in areas with frequent human activ
ities is temporarily not carried out, the remaining vege
tation-covered areas, cropland, bare soil, and some 
waterbodies have great potential for geothermal 
development.

5.4. Validation

5.4.1. Langpu geothermal field
The distribution of GDI values in the Langpu geother
mal area is shown in Figure 9(a), ranging from 1.2 to 
1.4. Using these values, we tested three thresholds (1.34, 
1.36, and 1.38) for the extraction of geothermal areas 
with the greatest development potential (Figure 9). The 
area corresponding to a threshold of 1.36 (Figure 9(c)) 
was most suitable, producing an area that would neither 
require excessive survey work (as is the case for the 1.34 
threshold, Figure 9(b)) nor exclude potentially valuable 
locations (as is the case for the 1.38 threshold, 
Figure 9(d)). This area contained 654 favorable points 
with a total area of 0.59 km2. Compared to the recorded 
first-grade geothermal area of 0.6 km2 (Zhang et al.  
2012), the extraction accuracy was 98%.

Table 4. Eigenvalues of principal components and their var
iance contribution rates.

Component Eigenvalue
Percentage of 
Variance (%)

Cumulative 
Percent (%)

1 1.737 57.9 57.9
2 0.920 30.7 88.6
3 0.343 11.4 100.0

Table 5. Weights of the influencing factors and coefficients of 
the principal components.

Evaluation Factor
Coefficient of 
Component 1

Coefficient of 
Component 2

DFF 0.32 0.95
DFGP 0.66 −0.27
Night-LST 0.68 −0.18
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5.4.2. Rehai geothermal field
Temperature was measured in eight drill wells in the 
Rehai area (Figure 10), and the corresponding GDI 
values are shown in Table 6. In general, the GDI values 

(ranging from 1.317 to 1.378) increased with an increase 
in well temperature (ranging from 30°C to 96°C), but 
there were some exceptions, which may reflect differ
ences in the well depths (Table 7). The locations of the 

Figure 8. Spatial distribution of Geothermal Detection Index (GDI) values. The enlargements show areas marked “a”, “b”, and “c” in 
the left image centered on thermal fields.

Table 6. Land-use classifications and corresponding pixel counts, proportion (%), area (m2), average altitude (m) and average GDI 
within GDI values ranging 1.3–1.6.

Land-Use Classification Pixel Count Percentage (%) Area (m2) Average Altitude (m) Average GDI

Vegetation 113445 49.8 102100500 1768.38 1.36
Cropland 94418 41.4 84976200 1624.20 1.37
Waterbody 452 0.2 406800 1234.11 1.36
Buildings 7483 3.3 6734700 1441.99 1.36
Nudation 12132 5.3 10918800 1553.90 1.37

Figure 9. GDI values in the Langpu geothermal field (a) and the geothermal potential detection area extracted using three 
thresholds of 1.34 (b), 1.36 (c), and 1.38 (d).
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eight measured drilling points are shown in Figure 11(a), 
with Hamazui having the highest temperature (up to 
96°C) and GDI value (1.378). Figure 11(b) shows GDI 
values around Da Zhai with a temperature of 71°C. 
Figure 11(c) shows GDI values around Shangqiluo, 
with a temperature of 30°C, indicating that the GDI 
results were also reliable for detecting potential geother
mal areas with relatively low temperatures.

6. Discussion

6.1. Impact of human activity on LST retrieval

Interference from human activity can complicate the 
interpretation of LST results. Indeed, some important 
temperature anomalies indicating the presence of 

geothermal resources may be neglected if areas of 
human activity are simply excluded. For this reason, 
it is important to further consider land use in the study 
area. The 2011 Tengchong City land survey identified 
areas affected by intense human activity, as shown in 
Figure 12. A comparison with Figure 7(b) indicates 
that the survey results can be considered fairly accu
rate. In the future, these land-use data could be com
bined with visual interpretation to determine the land- 
cover type of study sites as training samples for 
machine learning, which could allow the more effec
tive exclusion of human interference and target these 
sites for subsequent research.

In addition to this, the urban heat island effect also 
needs to be taken into account. Urban Heat Islands 
(UHI) are a manifestation of these changes, 

Figure 10. Field surveying in the Rehab area.

Table 7. Average GDI values corresponding to drilling well temperatures.
ID Drill Name Well Temperature (℃) GDI

CK1 Hamazui 96 1.378
CK2 Da Zhai 71 1.350
CK3 Shangjia Zhai 1 Well 61 1.376
CK4 Qiluoyingfang Well 56 1.364
CK5 Shangjia Zhai 2 Well 49 1.354
CK6 Langpu Zhai 45 1.350
CK7 Bangeshan 32 1.314
CK8 Shangqiluo 30 1.317

Figure 11. (A) Locations of eight drilling sites and Geothermal Detection Index (GDI) values in the Rehai area; (b) GDI values around 
Dazhai (CK2); (c) GDI values around Shangqiluo (CK8).
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a phenomenon in which urban areas are warmer than 
surrounding rural areas (Mirzaei and Haghighat  
2010). Urbanization creates a process in which natural 
landscapes are replaced by built-up areas. Therefore, it 
affects the absorption, storage, and emission rates of 
surface energy and releases excess anthropogenic 
energy (Hart and Sailor 2009). Urban heat islands 
are one of the main negative impacts of increased 
human activity and impervious surface cover in 
urban environments (Firozjaei et al. 2020; Huang, 
Liu, and Li 2021; Jiang et al. 2022). As an important 
part of the urban impervious surface, buildings and 
residences have different surface radiation and energy 
distribution from the natural surface. In order to 
ensure the accuracy of the identification of the 
geothermal potential area by the LST. In the future, 
it can be combined with Night-Time Light data or 
other effective methods to identify and exclude as 
much as possible, which is still a complex and challen
ging task (Liu, Chi, and Kuang 2014; Peng et al. 2016; 
Kuang 2018; Shao, Wu, and Li 2021; Qian et al. 2022; 
Yu et al. 2022; Li et al. 2022; ElGharbawi and Tamura  
2022).

6.2. Influence of topography and fault depth on 
geothermal detection

LST is controlled by the complex interplay of topo
graphy, incoming radiation, and atmospheric pro
cesses as well as by soil moisture, land cover, and 
vegetation types, especially in mountainous areas 
(Bertoldi et al. 2010; Jamali et al. 2022; Hussain et al.  
2022). Therefore, to improve the reliability of remotely 
sensed LST data, topographic correction is needed to 
adjust the spectral characteristics of land surfaces and 
account for the differences in surface irradiation 
caused by terrain. In this context, shading also had 
important effects on the land-surface energy balance 
in mountainous terrain (Bellasio et al. 2005). 
Therefore, the influences of geological factors compli
cate the quantification of topographic effects on LST 
and, thus, limit model detection accuracy. 
Furthermore, faults with different activity depths 
result in variable surface temperatures and degrees of 
geothermal fluid activity. Deep faults can induce 
upwelling of geothermal water, while shallow faults 
only provide channels for lower-temperature ground
water. The burial depth of geothermal resources and, 
hence, the economic feasibility of exploitation efforts. 
Therefore, further research is required to examine the 
influence of fault depth on geothermal potential 
detections.

6.3. Influence of land-surface thermal properties

Energy at the land surface is mainly derived from 
solar radiation, bioenergy, and the internal heat of 
the Earth (Zhang and Cao 2003). As we specifically 
aimed to explore the relationships between heat from 
the internal Earth and land-surface temperature, we 
selected MODIS-NLST products to reduce the influ
ence of daytime heat sources. However, given the 
range of land-cover types both in our study area 
and elsewhere, the thermal properties of the land 
surface can vary greatly (Zhang et al. 2015). 
Therefore, differences in the thermal capacity, con
ductivity, and diffusivity of different land-cover types 
should be taken into consideration in future research.

7. Conclusions

We developed and applied a new method for detecting 
geothermal activity using Tengchong as a case study. 
We derived high-resolution Night-LST data with satis
factory verification results. These data were combined 
with DFF and DFGP datasets in a multi-factor 
weighted model based on PCA, yielding 
a comprehensive GDI for assessing geothermal 
resources. By analyzing the spatial distribution of GDI 
values, we identified three geothermal potential areas in 
Tengchong, including vegetated areas that have not yet 

Figure 12. Areas of intensive human activity in the Tengchong 
region.
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been developed. These locations represent potentially 
valuable areas for the development and utilization of 
geothermal energy resources. Considering that areas 
with high LST coincided with areas of high human 
activity, additional research is now needed to examine 
human land uses on the derived GDI results. In addi
tion, a greater range of variables linked to geothermal 
resources could be added to the model to improve 
accuracy and detection capability.
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