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Abstract: The normalized difference vegetation index (NDVI) contains important data for providing
vegetation-cover information and supporting environmental analyses. However, understanding long-
term vegetation cover dynamics remains challenging due to data outliers that are found in cloudy
regions. In this article, we propose a sliding-window-based tensor stream analysis algorithm (SWTSA)
for reconstructing outliers in NDVI from multitemporal optical remote-sensing images. First, we
constructed a tensor stream of NDVI that was calculated from clear-sky optical remote-sensing
images corresponding to seasons on the basis of the acquired date. Second, we conducted tensor
decomposition and reconstruction by SWTSA. Landsat series remote-sensing images were used in
experiments to demonstrate the applicability of the SWTSA. Experiments were carried out successfully
on the basis of data from the estuary area of Salween River in Southeast Asia. Compared with random
forest regression (RFR), SWTSA has higher accuracy and better reconstruction capabilities. Results
show that SWTSA is reliable and suitable for reconstructing outliers of NDVI from multitemporal
optical remote-sensing images.

Keywords: outlier reconstruction; tensor decomposition; tensor stream analysis; normalized differ-
ence vegetation index (NDVI); Salween River estuary

1. Introduction

Global climate change has led to sea-level rise, desertification, and biodiversity
losses [1,2]. Vegetation cover is a sensitive indicator of climate change that feeds back
to it by influencing energy, water, and carbon cycles [1,3,4]. Variability in vegetation cover
represents one of the main sources of systematic changes over Earth’s surface at different
spatial scales [5,6]. Such changes are especially evident in areas of concentrated terrestrial,
oceanic, and atmospheric interactions, such as in estuarine coastal zones. The identification
of patterns in vegetation-cover dynamics is paramount for a greater understanding of
ecological responses of natural ecosystems to global climate change [3,7]. The normalized
difference vegetation index (NDVI), a near real-time vegetation index that is derived from
optical remote-sensing images is often used as a proxy for vegetation-cover variance. Fine
NDVI relies on clear-sky pixels in high-resolution optical remote-sensing images [8,9].

Remote-sensing techniques with temporal continuity and large spatial coverage pro-
vide effective and comprehensive means for the accurate estimation of vegetation-cover
conditions [3,9]. The number of remote sensors capable of acquiring appropriate temporal
data has increased considerably within the last few years [9–11]. With routine time-series
observations, satellite remote sensing provides an unprecedented capability for estimating
vegetation cover and its spatiotemporal variability at different spatial scales [3,11,12]. How-
ever, clouds cover roughly half of Earth [13,14]. Persistent cloud cover poses significant
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challenges for the acquisition of clear terrestrial optical remotely sensed imagery [14–16].
This occlusion produces a large number of outliers that are a persistent barrier to the
operational monitoring of vegetation for many regions of the world, especially in Southeast
Asia during the summer months [14,17,18]. Reconstructing the values of cloud-covered
pixels in optical remote-sensing imagery is crucial because outliers in images can produce
misleading results in environmental analyses [19–21].

Numerous algorithms were developed to reconstruct NDVI outliers for vegetation
estimation over the past few years. Spatial-information-based methods are typically pro-
posed on the basis of the spatial correlation between target pixels and neighboring clear-sky
pixels [22,23]. Other approaches are multisatellite data-fusion algorithms that combine
information from multiple sensors with different spatial, spectral, and temporal resolutions
to generate merged products with high spatiotemporal resolution [16,24,25]. Lastly, state-
of-the-art machine-learning algorithms are used to reconstruct NDVI [26,27]. Tensor stream
analysis is a fundamental model in machine learning, especially in the field of computer vi-
sion and image processing [21,28]. In recent years, tensor decomposition was verified to be
effective in capturing global low-rank correlation for tensor recovery tasks. A fast low-rank
tensor completion method was proposed for reducing dimensions of color images, MRI,
and videos [29]. The tensor decomposition model is being paid much attention in outlier
reconstruction for remote-sensing images. Low-rank tensor completion methods based
on tensor singular-value decomposition and core tensor minimization were proposed [30].
However, accurately reconstructing NDVI for cloud-covered pixels is an urgent issue in
widening NDVI-based applications [31–33].

To improve the accuracy of vegetation cover analyses, we explored a novel recon-
struction algorithm for outliers on the basis of the Tucker decomposition method and
sliding-window-based tensor stream analysis. Landsat series remote-sensing images are
used in experiments to demonstrate the applicability of the proposed approach. As a case
study, we successfully reconstructed NDVI in an estuary of Salween River in Southeast Asia.
The proposed method is reliable and suitable for reconstructing outliers in cloud-covered
pixels. This is one of only a few studies that used tensor stream analysis to reconstructive
NDVI in the Salween River Basin.

2. Materials and Methods
2.1. Datasets

Experimental analysis was performed on datasets for the estuary of Salween River
(Figure 1a). Salween River is one of only a few long free-flowing rivers in Southeast
Asia, originating in the Tibet Plateau and emptying into the Andaman Sea in the Indian
Ocean [34]. On the basis of Shuttle Radar Topography Mission (SRTM) data, Figure 1a,b
show the location and digital elevation model (DEM) of the study area, an area of about
3.6× 103 km2. We used optical remote-sensing images acquired by Landsat series satellite
from the summer of 1973 to the summer of 2020. Unfortunately, the majority of summer
images included a large number of outliers in cloud-covered pixels. Clear-sky images that
could be used for deriving NDVI are from winter. Table 1 shows the temporal and spatial
extent of the experimental dataset. Data were divided into training and testing sets; the
former was used to determine the values of algorithm parameters, while the latter was
used to evaluate the performance of the proposed algorithm. In this article, we reconstruct
outliers of summer NDVI on the basis of the above datasets.

The atmosphere correction method [35,36] was used for remote-sensing images down-
loaded from the USGS Earth explorer system (https://earthexplorer.usgs.gov, accessed on
19 September 2020). The spatial resolution of all optical remote-sensing images was resam-
pled at 30 × 30 m, and the study area was divided into 2160×1866 pixels (4,030,560 pixels).
NDVI image series (Figure 1) were computed on ENVI 5.3 software. We stored all NDVI
data in multidimensional arrays to construct the tensor.

https://earthexplorer.usgs.gov
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(a) (b) 

Figure 1. Study area location (a) DEM (b) and NDVI image series (Terrain data based on SRTM
downloaded from USGS).
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Table 1. Optical remote-sensing images of study area from 1973 to 2020.

Datasets Acquired Date Platform Spatial Resolution

Training

4 March 1973 Landsat 1 60 m × 60 m
22 January 1974 Landsat 1 60 m × 60 m
27 December 1978 Landsat 3 60 m × 60 m
19 February 1979 Landsat 3 60 m × 60 m
25 February 1988 Landsat 5 30 m × 30 m
19 January 1989 Landsat 4 30 m × 30 m
18 March 1990 Landsat 5 30 m × 30 m
16 January 1991 Landsat 5 30 m × 30 m
4 February 1992 Landsat 5 30 m × 30 m
6 February 1993 Landsat 5 30 m × 30 m
14 April 1994 Landsat 5 30 m × 30 m
12 February 1995 Landsat 5 30 m × 30 m
30 January 1996 Landsat 5 30 m × 30 m
1 February 1997 Landsat 5 30 m × 30 m
4 February 1998 Landsat 5 30 m × 30 m
7 February 1999 Landsat 5 30 m × 30 m
10 February 2000 Landsat 5 30 m × 30 m
12 February 2001 Landsat 5 30 m × 30 m
23 February 2002 Landsat 7 30 m × 30 m
25 January 2003 Landsat 7 30 m × 30 m
8 March 2004 Landsat 5 30 m × 30 m
7 February 2005 Landsat 5 30 m × 30 m
14 March 2006 Landsat 5 30 m × 30 m
2 April 2007 Landsat 5 30 m × 30 m
16 December 2008 Landsat 5 30 m × 30 m
2 February 2009 Landsat 5 30 m × 30 m
21 February 2010 Landsat 5 30 m × 30 m
8 February 2011 Landsat 5 30 m × 30 m
14 December 2013 Landsat 8 30 m × 30 m
4 March 2014 Landsat 8 30 m × 30 m
20 December 2015 Landsat 8 30 m × 30 m
6 February 2016 Landsat 8 30 m × 30 m
9 December 2017 Landsat 8 30 m × 30 m
16 November 2018 Landsat 8 30 m × 30 m

Testing 2 March 2019 Landsat 8 30 m × 30 m
5 April 2020 Landsat 8 30 m × 30 m

2.2. Methods
2.2.1. Data Representation

Optical remote-sensing images contain spatial and temporal information about the
surface of Earth [37], and are composed of pixels marked with row and column numbers.
NDVI is a widely used vegetation index to monitor and project conditions of vegetation
cover [38] that can be calculated from optical remote-sensing images as follows [39]

NDVI =
ρNir − ρRed
ρNir + ρRed

, (1)

where ρNir and ρRed represent the near-infrared and red bands of optical remote-sensing
images, respectively.

The value of NDVI is between −1 and 1; a negative value indicates that the ground is
covered with water, snow, etc.; 0 indicates that the ground has rocks or bare ground etc.;
and a positive value indicates ground with vegetation. The higher the value is, the greater
the vegetation cover. The NDVI of a vegetated area tends toward positive values, whereas
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water and urban areas are represented by near-zero or negative values [3]. Thus, optical
remote-sensing images can be represented as a multidimensional array with NDVI.

2.2.2. Tensor Construction

A tensor is a multidimensional array, and the number of dimensions is called the order
of the tensor, also named as ways and modes [40]. In tensor terminology, the order of a
tensor X ∈ RI1×I2×...×IN is N, and the elements of X are denoted as ai1i2 ...iN . To model
vegetation-cover conditions in different years and the same geographical area under the
same spatial resolution, a tensor X ∈ RI×J×K can be constructed on the basis of NDVI
pixels, with the three dimensions standing for row number, column number, and acquired
date of pixel, respectively, as shown in Figure 2a. An entry X (i, j, k) = c denotes that the
value of pixel in the i-th row, j-th column and in the k-th year is c.

(a)

(b)

Figure 2. Tensor and sliding-window-based tensor stream analysis (The process of tensor stream con-
struction and tensor decomposition are presented in (a), and (b) shows the process of reconstructing
outlier based on SWTSA. Xd, W(d, w) and U(i) represent the tensor, sliding window and the factor
matrix, respectively).

In tensor terminology, an n-order tensor can be formulated as a matrix by unfolding,
and the elements of the tensor are mapped to the matrix.

un f oldn(X ) := X(n) ∈ RIn×(I1 ...IN), (2)

and the elements of the tensor are mapped to matrix the element(in, j), where
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j=1+
N

∑
k=1
k 6=n

(ik − 1)Jk, with Jk =
k−1

∏
N=1
N 6=n

IN , (3)

The n-mode product of a tensor X ∈ RI1×I2×...×IN with a matrix U∈RJn×IN , denoted
as X×nU, is given by

(X ×n U)i1 ...in−1 jin+1 ...iN =
Im

∑
in=1

xi1i2 ...iN ujin , (4)

In general, the size of tensor is represented by a norm, and the Forbenius norm of a
tensor X ∈ RI×J×K is denoted by [40,41]

||X ||F =

√√√√ I

∑
i=1

J

∑
j=1

K

∑
k=1

x2
ijk, (5)

2.2.3. Tensor Stream

Tensor stream is a sequence of 3-order tensors X1. . . Xd. . .Xn, where each Xd ∈ RI×J×K,
d is an integer increasing with time [42]. According to this notation, a tensor stream was
constructed from multitemporal optical remote-sensing image series. As shown in Figure 2,
tensor X1 corresponds to the image in the starting position of tensor stream, and tensor Xn
corresponds to the ending position. Thus, a tensor stream is formed by

{Xd|d = 1, 2, 3, . . . n}, (6)

2.2.4. Tensor Decomposition

Tensor decomposition and tensor stream analysis are powerful and efficient methods
for modeling a wide variety of heterogeneous multidimensional data, and mining spatial
and temporal patterns [43]. In this article, we formulated the pattern extraction process as
tensor decomposition on the basis of Tucker decomposition [44] (Figure 2a). In terms of
3-mode products, tensor X ∈ RI×J×K can be rewritten as

Xw ≈ G ×1 U1 ×2 U2 ×3 U3

=
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1r2r3 ar1 ◦ ar2 ◦ ar3

= [[G, U1, U2, U3]], (7)

The core tensor G should satisfy

G = Xw

3

∏
i=1
×iUT

i , (8)

where Ui (i = 1, 2, 3) is the factor matrix, core tensor G represents the correlation between
factor matrices, and ◦ stands for the vector outer product. Ranks R1, R2 and R3 represent
the number of Xd, columns, and rows in the core tensor, respectively. For three vectors,
ar1 ∈ RI×1, ar2 ∈ RJ×1, ar3 ∈ RK×1, ar1 ◦ ar2 ◦ ar3 is an I × J× K rank-one three-way array
with the (i, j, k)-th element ar1i ar2j ar3k .

Further, Tucker decomposition can be element-wise rewritten:

xijk≈
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1r2r3 air1 ajr2 akr3 , (9)
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2.2.5. Sliding-Window-Based Tensor Stream Analysis Algorithm (SWTSA)

To determine dynamic patterns of NDVI from optical remote-sensing image series,
we propose a sliding-window-based tensor stream analysis approach. A window W(d, w)
consists of a subset of a tensor stream beginning Xd with size w [45]. The window was
formally denoted as

W(d, w) = {Xd,Xd+1,Xd+2}, (10)

where d = 1, 2, . . . , n, indicates the position of the sliding window, Xd ∈ RI×J×K.
Given a window W(d, w), a tensor Xw ∈ RI×J×K was extracted from tensor stream for

Tucker decomposition upon the window. An approximate tensor X̂w could be reconstructed
according to G and {Ui|i = 1, 2, 3} on the new window W(d + 1, w). The parameter
d represents the current position of the sliding window. If the outlier appears at position d,
the tensor will be filled with the approximate reconstruction result on the basis of window
W(d, w), when the window slides from position d to (d + 1), as illustrated in Figure 2.

Tensor stream analysis was conducted to find the set of orthogonal factor matrices
Ui (i = 1, 2, 3) to minimize the reconstruction error which is less than given threshold
ε. This optimization problem can be solved by using the gradient-based optimization
method [46], where the reconstruction error is defined as

e(X̂w) =
||Xw − X̂w||

2
F

||Xw||2F
, (11)

Thus, we assume that Xw ∈ RI×J×K, and the problem can be formulated as

min
G,U1,U2,U3

∥∥∥Xw − [[G, U1, U2, U3]]
∥∥∥, (12)

In order to obtain the factor matrices, we use the following Forbenius norm to define
the objective function for tensor stream analysis on window W(d, w) ∈ RI×J×K.

L (Xw,U1,U2, U3)

=
1
2

∥∥∥Xw − G ×1 U1 ×2 U2 ×3 U3

∥∥∥2

F

+ λw

(
||G||2F+||U1||2F+||U2||2F+ ||U3||2F

)
, (13)

Parameter λw controlling the contribution of different dimensions can be chosen
according to the Bayesian information criterion (BIC) [43,47]. During the experiment,
parameter tuning is embedded into the whole iteration, i.e., λw is modified after each
update of Ui. An iterative meta-algorithm is presented in Algorithm 1.

Given a window size w and core tensor G ranks R1, R2, R3, SWTSA can be interpreted
via the two following steps.

• Step 1: Decomposition. Tensor is decomposed on the basis of a given window. This
step can be implemented with the following operations:

(i) Extract a tensorXw ∈ RI×J×K from tensor stream at the position d(d = 1, 2, . . . , n)
on the window size.

(ii) Tensor Xw is decomposed with the methods in Section 2.2.4.

• Step 2: Reconstrution. An approximate tensor X̂w could be reconstructed on the
basis of G and {Ui|i = 1, 2, 3} at a new window W(d + 1, w). This step involves the
following steps:

(i) Reconstruction of X̂w according to X̂w ≈ [[G, U1, U2, U3]].
(ii) Calculation of a reconstruction error e(X̂w).
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(iii) If e(X̂w) is unsatisfied, Step 1 is repeated with reassigned R1, R2, R3, otherwise,
window position slides from d to (d + 1). Parameter d represents the current
position of the sliding window.

Algorithm 1 Sliding-window-based tensor stream analysis algorithm (SWTSA)

Input: Tensor stream {Xd|d = 1, 2, . . . , n}, window size w, core tensor ranks R1, R2, R3,
ε = 10−5, λw = 0.5, e = 0.

Output: G, {Ui}, and X̂w.
1: for d = 1 to n do
2: Xw = W(d, w) //By Equation (10)
3: for i = 1 to 3 do
4: Ui ← U(:, 1 : Ri) //By Equation (9)
5: λw = λw(Ui)
6: end for
7: end for
8: G ← Xw ×1 UT

1 ×2 UT
2 ×3 UT

3 //By Equation (8)
9: X̂w ← [[G, U1, U2, U3]] //By Equation (4) and Equation (13)

10: e← e(X̂w) //By Equation (5) and Equation (11)
11: if e > ε then
12: Reassign R1, R2, R3
13: Go to line 1
14: end if
15: Return G, {Ui}, and X̂w.

2.2.6. Performance Evaluation Metrics

Accuracy, precision, recall, F1 score, and kappa concordance coefficient were obtained
and used as evaluation metrics for reconstruction results, which were defined as [48]

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

F1 score =
2× Precision× Recall

Precision + Recall
(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Kappa =
n ∑n

i=1 Xii −∑n
i=1 Xi+X+i

n2 −∑n
i=1 Xi+X+i

(18)

where TP, TN, FP and FN corresponds to true-positive, ,true-negative, false-positive, and
false-negative pixels, respectively. Xii represents the actual value, Xi+X+i represents the
reconstructed value, n is the sample size.

In order to evaluate the performance of the proposed algorithm, we fulfilled the
SWTSA and the general Tucker decomposition algorithm on the same real datasets. As eval-
uation metrics, we used execution time of algorithms and root-mean-square error (RMSE)
between reconstructed value X̂w and the actual value Xw. The RMSE was defined as

RMSE =

√√√√ ||Xw − X̂w||
2
F

|w| (19)

To explore the influence of core tensor size on accuracy of the reconstructed results,
we performed SWTSA on the basis of different rank sizes. To obtain as small a core tensor
as possible while ensuring accuracy of reconstruction, threshold ε and window size w were
set to 10−5 and 3× 2160× 1866, respectively.
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Multiple linear regression (MLR) and random forest regression (RFR) are effective
methods for outlier reconstruction that have been widely used in recent years [20,26,49,50].
We adopted SWTSA, MLR and RFR on the basis of the same datasets as those for evaluating
the performance of proposed algorithm.

In particular, this process was implemented with Python 3.6 using the Alternat-
ing Least Squares (ALS) algorithm [51]. The final results were mapped with ArcGIS
10.2 software. All programs and software were run on two PCs with Intel(R) core(TM)
i7-10750H CPU @2.6 GHz, and 16G main memory.

3. Results
3.1. Analysis of Reconstructed Results

Reconstruction results based on different rank sizes using the proposed approach are
shown in Figure 3. First, when ranks were 1× 3× 2, the approximate tensor reconstructed
basic topography of the study area. Second, when ranks were upgraded to 3 × 3 × 3,
topographic features were more clearly portrayed, and the trends and the detailed features
of vegetation cover were clearly distinguished. For example, the darker the green areas,
the higher the NDVI values, indicating that the vegetation cover was higher in these areas.
Third, when ranks were increased to 3× 5× 5, most vegetation-cover information in 2019
and 2020 was reconstructed and fully predicted, with RMSEs of 0.110 for 2019 and 0.098 for
2020, especially for the vegetation-cover characterization of offshore islands and complex
water systems at the estuary. Moreover, Figure 3 demonstrates that the reconstruction
results of SWTSA with rank size of 3× 10× 10 were better than those of RFR, and almost
the same as those of MLR. Furthermore, to explore the precision of reconstruction results,
we constructed larger ranks.

Figure 3. NDVI reconstructed results for different rank sizes.

Actual and reconstructed values had a similar accumulation curve (Figure 4), and
more than 85% of actual and reconstructed areas overlapped. Meanwhile, cumulative
curves with different rank sizes implied that the larger ranks of core tensor may not mean
significant improvement in accuracy for reconstruction results. According to the evaluation
metrics shown in Table 2, for most of the reconstruction results, values of accuracy, precision,
recall, and F1 score exceeded 0.85, which was considered to be acceptable. When rank sizes
increased to 3× 5× 5, the values of kappa concordance coefficient corresponding to 2019
and 2020 exceeded 0.80 and 0.95 , respectively. In comparison with RFR, SWTSA has better
accuracy and reconstruction capabilities. Moreover, Table 2 demonstrates that SWTSA and
MLR had almost the same reconstruction effect corresponding to rank size of 3× 10× 10.
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Figure 4. Cumulative frequency distributions of NDVI for actual and reconstructed values.

Table 2. Performance evaluation of reconstruction.

Method Year/Ranks Accuracy Precision Recall F1 Score Kappa

SWTSA

2019/1× 3× 2 0.848 0.876 0.786 0.829 0.627
2019/3× 3× 3 0.900 0.931 0.852 0.890 0.758
2019/3× 5× 5 0.916 0.936 0.879 0.906 0.800
2019/3× 10× 10 0.918 0.937 0.881 0.908 0.805
2020/1× 3× 2 0.907 0.920 0.873 0.896 0.783
2020/3× 3× 3 0.957 0.960 0.944 0.952 0.903
2020/3× 5× 5 0.978 0.979 0.973 0.976 0.952
2020/3× 10× 10 0.980 0.980 0.975 0.978 0.955

MLR 2019/- 0.917 0.930 0.884 0.906 0.804
2020/- 0.981 0.981 0.977 0.979 0.957

RFR 2019/- 0.711 0.832 0.571 0.677 0.179
2020/- 0.751 0.851 0.636 0.728 0.330

A plot of reconstructed against actual values shows that reconstructed values were
closer to actual values with an increase in the number of ranks (Figure 5). Meanwhile, for
most reconstruction results, the values of Pearson’s correlation coefficient (r) exceeded 0.85.
The coefficient of determination (R2) of MLR and RFR was around 0.8, which was con-
sidered unacceptable. Further, reconstruction results for 2020 were better than those for
2019 (Figures 3–5), indicating that optical remote-sensing images from the same platform
(Landsat-8) may obtain different results.

Lastly, considering the execution time of the proposed algorithm and the accuracy
requirements of the reconstructed results, we chose the approximate reconstruction result
with ranks of 3× 10× 10 for 2019, and the approximate reconstruction result with ranks of
3× 5× 5 for 2020. Both RMSE values for the chosen ranks were below 0.15 (Figure 6). All
statistical indicators were consistent across results (Table 3).
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Figure 5. Scatter plots between actual and reconstructed values for different rank sizes (r: Pearson
correlation coefficient, R2: coefficient of determination).

Table 3. Statistical characteristics of actual and reconstructed values.

Datasets Samples Mean Variance Minimum Maximum

2019 actual value 4,030,560 0.1203 0.0476 −0.2433 0.6322
2019 SWTSA 4,030,560 0.1349 0.0326 −0.2203 0.5651
2019 MLR 4,030,560 0.1546 0.0300 −0.2083 0.6020
2019 RFR 4,030,560 0.2925 0.0290 −0.2489 0.5651
2020 actual value 4,030,560 0.1052 0.0395 −0.1974 0.5109
2020 SWTSA value 4,030,560 0.1203 0.0462 −0.2307 0.5387
2020 MLR 4,030,560 0.1228 0.0480 −0.2401 0.6353
2020 RFR 4,030,560 0.2179 0.0281 −0.2830 0.5690

3.2. Evaluation the Performance of SWTSA

Figure 6 shows a quantitative evaluation of execution time and RMSE metrics of
the proposed algorithm and the general Tucker decomposition method. First, our results
showed that the proposed algorithm required less execution time and had a lower RMSE
than that of the general Tucker decomposition method. Second, execution time increased
with the increase in rank size. Meanwhile, the increase in execution time with Algorithm 1
was lower than that with the general Tucker decomposition method. Third, our proposed
algorithm converged faster than the general Tucker decomposition method did in terms of
RMSE. Additionally, the size of the core tensor influenced reconstructive results significantly.
When the ranks of the core tensor increased to 3× 5× 5, RMSE exhibited a trend toward
convergence. Generally, RMSE values obtained with Algorithm 1 in all experiments were
less than 0.5, with the best RMSE was less than 0.1.

The receiver operating characteristic (ROC) curves of MLR, RFR, and different rank
sizes of core tensor are shown in Figure 7. The area under the curve (AUC) was also
calculated to estimate the performance of SWTSA; for all reconstruction results, the values
of AUC exceeded 0.9, which showed SWTSA to be able to achieve robust performance
for reconstruction.
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Figure 6. Execution time and the RMSE values with different rank sizes of core tensor.

Figure 7. ROC curves of SWTSA for different rank sizes (AUC: Area Under Curve).

4. Discussion

The NDVI contains important data for providing vegetation cover information and
supporting environmental analyses. This article highlighted that accurately reconstructing
NDVI value for cloud-covered pixels in optical remote-sensing imagery is an urgent issue
in widening NDVI-based applications. The proposed approach is reliable and suitable
for reconstructing outliers of NDVI from multitemporal optical remote-sensing images.
This facilitates vegetation dynamic change detection and environmental analyses in cloudy
areas. However, there are some limitations in this study that need to be further improved
and optimized.

First, optical images used in experiments were all acquired by the Landsat series
satellites. The influence of data acquired by sensors of other Earth observation plans, such as
MODIS, Sentinel, and SPOT on reconstruction results needs further experimental research
and analysis. Moreover, wavelengths of infrared and near-infrared bands of sensors from
different periods of the Landsat series were slightly different. In this experiment, we did
not consider the possible impact of this difference on results due to the inability to perform
in situ spectral measurements.

There are few valid data for analysis from summer because of the majority cloudy
weather in summer. Our proposed method can effectively reconstruct outliers in summer
on the basis of acquired winter data. However, the impact of increasing valid data from
summer on the reconstruction results remains to be assessed.

The spatial resolution of all optical images was resampled to 30 × 30 m according to
the spatial resolution of the majority of images being 30 × 30 m in the dataset (Table 1). On
the one hand, optical remote-sensing images with resolution higher than 30 m were difficult
to obtain in the early stage. On the other hand, field measurements could not be carried out
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due to the impact of COVID-19. Therefore, different resolutions and coregistration errors
had an unclear effect on the experimental results.

Lastly, this paper focused on exploring NDVI reconstruction methods for cloud-
covered pixels on the basis of the data structure of NDVI from clear skies and their changing
characteristics; therefore, reasons for long-term NDVI changes were not analyzed and
discussed. In future work, we aim to quantitatively discuss the possible effects on NDVI
changes that land use changes, deforestation, and riverbed evolution. Meanwhile, in order
to enhance the data fusion capability of the algorithm, we aim to implement the proposed
algorithm on the basis of Google Earth Engine (GEE) [52,53], a cloud computing platform,
in further work.

5. Conclusions

This article presented a tensor framework for reconstructing the NDVI on the basis
of tensor decomposition and a sliding-window-based reconstruction algorithm from mul-
titemporal optical remote-sensing images. We proposed a generic algorithm and used it
successfully with NDVI that was extracted from Landsat series optical remote-sensing
images for an estuary of Salween River in Southeast Asia. Our results showed that the
proposed algorithm was able to reconstruct NDVI with small ranks and less execution
time than the general Tucker decomposition method can. Compared with RFR, SWTSA
achieved better accuracy and reconstruction capabilities. Moreover, experimental results
demonstrated that SWTSA and MLR had almost the same reconstruction effect corre-
sponding to rank size 3× 10× 10. Lastly, this approach was capable of describing spatial
distribution patterns and temporal evolution at different levels (rank sizes). In addition, we
determined that large core tensors may not mean significant improvement in accuracy for
reconstruction of NDVI, but a significant increase in the execution time of the algorithm.
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